Prostate Cancer Proton Therapy Simulation Based On Homogeneous Water Equivalent Thickness Pencil Beam Model
Abstract
Terapi proton merupakan modalitas penting dalam pengobatan kanker prostat karena kemampuannya untuk memberikan dosis yang tepat ke volume target dengan paparan minimal pada jaringan sehat melalui karakteristik Puncak Bragg. Studi ini bertujuan untuk mengembangkan model simulasi berkas pensil yang terintegrasi dengan Ketebalan Setara Air (WET) homogen menggunakan platform simulasi Monte Carlo Geant4 (versi 11.2.1) untuk meningkatkan akurasi dan efisiensi perencanaan dosis. Simulasi dilakukan pada phantom manusia berdasarkan ICRP 145 dengan resolusi detektor 1 mm. Puncak Bragg yang Tersebar (SOBP) dioptimalkan pada tiga sudut iradiasi (0°, 45°, 90°) menggunakan fungsi Kuadrat Terkecil Linier (lsqlin) untuk mencapai dosis konstan (Dconst) di seluruh wilayah plateau. Hasil menunjukkan ketidakpastian jangkauan proton <1 mm dengan Dconst optimal pada sudut 0°, 45°, dan 90° masing-masing sebesar 0,66, 0,62, dan 0,53 nGy/proton, yang mencakup kedalaman 7,32-10,21 cm, 9,68-12,48 cm, dan 17,26-20,13 cm. Integrasi WET homogen berhasil menyederhanakan beban komputasi sambil mempertahankan akurasi tinggi, sehingga dapat diintegrasikan ke dalam sistem perencanaan terapi konvensional. Model ini menawarkan solusi efisien untuk fasilitas dengan kapasitas terbatas, meskipun validasi klinis lebih lanjut dengan data pasien nyata masih diperlukan untuk memastikan kemampuan adaptasi terhadap variasi anatomi individu.
Keywords
Full Text:
PDFReferences
. D. Jette and W. Chen, "Creating a spread-out Bragg peak in proton beams" Physics in Medicine and Biology, 56(11), (2011). doi:10.1088/0031-9155/56/11/N01.
. Hartsell WF, Simone CB 2nd, Godes D, Maggiore J, Mehta MP, Frank SJ, Metz JM, Choi JI. Temporal Evolution and Diagnostic Diversification of Patients Receiving Proton Therapy in the United States: A Ten-Year Trend Analysis (2012 to 2021) From the National Association for Proton Therapy. Int J Radiat Oncol Biol Phys. 2024 Jul 15;119(4):1069-1077. doi: 10.1016/j.ijrobp.2023.12.041.
. Wroe AJ, Ghebremedhin A, Gordon IR, Schulte RW, Slater JD. Water equivalent thickness analysis of immobilization devices for clinical implementation in proton therapy. Technol Cancer Res Treat. 2014 Oct;13(5):415-20. doi: 10.7785/tcrtexpress.2013.600260.
. Zhang R, Newhauser WD. Calculation of water equivalent thickness of materials of arbitrary density, elemental composition and thickness in proton beam irradiation. Phys Med Biol. 2009 Mar 21;54(6):1383-95. doi: 10.1088/0031-9155/54/6/001.
. ScienceDirect. A Model for Secondary Monitor Unit Calculations of PBS Terapi Proton. Radiother Oncol. 2023;145:88-95. doi:10.1016/j.radonc.2023.02.015.
. Jiang K, MacFarlane M, Mossahebi S, Zakhary MJ. Evaluation of treatment planning system accuracy in estimating the stopping-power ratio of immobilization devices for proton therapy. J Appl Clin Med Phys. 2023 Feb;24(2):e13831.doi:10.1002/acm2.13831.
. Zahra Hashemi, Mansoureh Tatari, Haladhara Naik, Simulation of dose distribution and secondary particle production in proton therapy of brain tumor, Reports of Practical Oncology & Radiotherapy, Volume 25, Issue 6, 2020, Pages 927-933, ISSN 1507-1367,https://doi.org/10.1016/j.rpor.2020.08.015.
. Martinez, D. M., Rahmani, M., Burbadge, C., Lee, S. H., Cascio, E. W., Papiez, L., Moskvin, V., & Timmerman, R. (2019). A practical solution of the Bethe equation in the energy range applicable to radiotherapy and radionuclide production. Scientific Reports, 9, Article 17599. https://doi.org/10.1038/s41598-019-54103-3.
. Paganetti, H. (2012). Range uncertainties in proton therapy and the role of Monte Carlo simulations. Physics in Medicine & Biology, 57(11), R99–R117. https://doi.org/10.1088/0031-9155/57/11/R99.
. Mohammed, M. I. (2024). Theoretical study of energy loss of proton in human tissues. Ibn AL-Haitham Journal For Pure and Applied Sciences, 37(4), 162–171. https://doi.org/10.30526/37.4.3245.
. Arce, P., Bolst, D., Bordage, M. C., Brown, J. M. C., Cirrone, P., Cortés-Giraldo, M. A., Cutajar, D., Cuttone, G., Desorgher, L., Dondero, P., Dusseau, L., Faddegon, B., Fancher, C., Guatelli, S., Incerti, S., Ivanchenko, V., Jacquet, M., Karamitros, M., Kyriakou, I., Villagrasa, C. (2021). Report on G4-Med, a Geant4 benchmarking system for medical physics applications developed by the Geant4 Medical Simulation Benchmarking Group. Medical Physics, 48(1), 19–56. https://doi.org/10.1002/mp.14226.
. Peters, N., Wohlfahrt, P., Hofmann, C., Möhler, C., Menkel, S., Tschiche, M., Krause, M., Troost, E. G. C., Richter, C., & Jakobi, A. (2023). Consensus guide on CT-based prediction of stopping-power ratio using a Hounsfield look-up table for proton therapy. Radiotherapy and Oncology, 184, Article 109675. https://doi.org/10.1016/j.radonc.2023.109675.
. Unkelbach J, et al. Optimization of intensity modulated proton therapy. Med Phys. 2009;36(5):1813-1821. doi:10.1118/1.3110081.
. Chen, Y., Michalski, D., Houser, C., & Galvin, J. M. (2002). A deterministic iterative least-squares algorithm for beam weight optimization in conformal radiotherapy. Physics in Medicine & Biology, 47(10), 1647–1658. https://doi.org/10.1088/0031-9155/47/10/303.
. Budiman R, Sutanto H, Tursinah R, Triadyaksa P. Dose distribution of pencil beam proton therapy using Geant4 simulation for breast cancer treatment. J Phys Its Appl. 2025;7(2):48-53. doi:10.14710/jpa.2025.48-53.
. Chang, J. Y., Zhang, X., Knopf, A., Li, H., Mori, S., Dong, L., Lu, H. M., Liu, Q., Liao, Z., Hobbs, B., Shen, J., Jeter, M., Gomez, D. R., Welsh, J. W., Gillin, M. T., Hocht, S., Flampouri, S., Lin, S. H., Li, Z., Mohan, R. (2017). Consensus guidelines for implementing pencil-beam scanning proton therapy for thoracic malignancies on behalf of the PTCOG thoracic and lymphoma subcommittee. International Journal of Radiation Oncology, Biology, Physics, 99(1), 41–50. https://doi.org/10.1016/j.ijrobp.2017.05.014.
. Lomax, A. J., Boehringer, T., Coray, A., Egger, E., Goitein, G., Grossmann, M., Juelke, P., Lin, S., Pedroni, E., Rohrer, B., Roser, W., Rossi, B., Siegenthaler, B., Stadelmann, O., Stauble, H., Vetter, C., & Wisser, L. (2020). Treatment planning for proton therapy: What is needed in the next 10 years? British Journal of Radiology, 93(1107), Article 20190359. https://doi.org/10.1259/bjr.20190359.
. Schaub, S. K., Hartvigson, P. E., Lock, M. I., Høyer, M., Brunner, T. B., Cardenes, H. R., Dawson, L. A., Kim, E., Klages, P., Parikh, P. J., Rwigema, J. C. M., Seong, J., Willett, C., Mendez Romero, A., Goodman, K. A., & Haddock, M. G. (2020). Intensity-modulated proton therapy using dose-painting pencil beam scanning for high-risk hepatocellular carcinoma. Journal of Clinical Oncology, 38(4_suppl), Article 558. https://doi.org/10.1200/JCO.2020.38.4_suppl.558.
. Vítek, P., Doležel, M., Vaculíková, M., Bělohlávek, P., & Boháčová, P. (2021). Pencil beam scanning (PBS) intensity modulated proton therapy (IMPT) for anal cancer. Radiation Oncology, 16, Article 253. https://doi.org/10.1186/s13014-021-01979-9.
. Inaniwa, T., Suzuki, M., Sato, S., Noda, A., Iwata, Y., Kanematsu, N., & Kohno, R. (2023). Stopping-power ratio of body tissues with updated effective energies and I-values. Medical Physics, 50(6), 3488–3496. https://doi.org/10.1002/mp.16324.
. Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G., Behner, F., Bellagamba, L., Boudreau, J., Broglia, L., Brunengo, A., Burkhardt, H., Chauvie, S., Chuma, J., Chytracek, R., ... Zschiesche, D. (2003). Geant4 a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3), 250–303. https://doi.org/10.1016/S0168-9002(03)01368-8.
. Kochebina, O., Bär, E., Battistoni, G., Boehlen, T., Boswell, C., Chandra, R., Chiriotti, S., Cirrone, G. A. P., Cuttone, G., Guatelli, S., Höss, M., Janeiro, L., Lestand, L., Lund, E., Muraro, S., Patera, V., Perl, J., Resch, A., Romano, F., ... Grevillot, L. (2024). GATE Monte Carlo simulation toolkit for medical physics. EPJ Web of Conferences, 295, Article 04043. https://doi.org/10.1051/epjconf/202429504043.
. International Commission on Radiological Protection (ICRP). (2020). Adult reference computational phantoms. ICRP Publication 145. Annals of the ICRP, 49(1), 1–125. https://doi.org/10.1177/0146645320911864.
. Kim, C. H., Yeom, Y. S., Nguyen, T. T., Han, M. C., Choi, C., Lee, H., Shin, B., Griffin, K. T., Bolch, W. E., & Lee, C. (2020). ICRP Publication 145: Adult mesh-type reference computational phantoms. Annals of the ICRP, 49(3), 13–201. https://doi.org/10.1177/0146645319893605.
. Biegała, M., Kopeć, M., & Dąbrowski, T. (2016). Analysis of dose distribution in organs at risk in patients with prostate cancer treated with ionizing radiation. Reports of Practical Oncology & Radiotherapy, 21(5), 428–436. https://doi.org/10.1016/j.rpor.2016.04.004.
. Moteabbed, M., Trofimov, A., & Paganetti, H. (2017). Optimization of beam angles for proton therapy of prostate cancer. Medical Physics, 44(6), 2512–2521. https://doi.org/10.1002/mp.12255.
[
. Schneider U, et al. Calculation of water equivalent thickness of materials of arbitrary density. Med Phys. 2009;36(7):3108-3121. doi:10.1118/1.3148582.
. Gottschalk B, et al. Water equivalent path length calibration for proton therapy. Phys Med Biol. 2015;60(17):6675-6693. doi:10.1088/0031-9155/60/17/6675.
DOI: http://dx.doi.org/10.52155/ijpsat.v55.2.7837
Refbacks
- There are currently no refbacks.
Copyright (c) 2026 Muhammad Fitriadi

This work is licensed under a Creative Commons Attribution 4.0 International License.

















