Mechanical and Physicochemical Characterization Of A Cylindrical Tank Manufactured From Plastic Waste And Sisal Fiber

Jean Marcel RAKOTONIRINA, Patrick ROGE, Mariette RAZANAJATOVO

Abstract


This study focuses on the characterization of a cylindrical tank made from plastic waste reinforced with Agave angustifolia fibers. The objective is to assess the mechanical and functional properties of the final product in order to determine its potential for practical and sustainable use. The experimental process involved material selection, cold molding, and the addition of natural fibers to enhance structural performance. An epoxy resin was used as a bonding agent between the plastic matrix and the natural fibers to improve cohesion and mechanical properties of the composite. Various tests were conducted, including mechanical strength, water tightness, and aging resistance. The results show that the additional of Agave angustifolia fibers significantly improves the mechanical properties of recycled plastic, particularly compressive strength and stiffness. The tank also demonstrates good water retention capacity and long – term durability. These findings confirm the feasibility of producing low – cost, environmentally friendly containers using a mixture of plastic waste and natural fibers. This research contributes to the valorization of plastic waste and offers sustainable solution for regions facing environmental challenges and limited access to resources.

Keywords


Composite, Mechanical Properties, Plastic Waste, Cylindrical Tank, Cold Process, Porosity.

Full Text:

PDF

References


T. BRAHIMAN, Elaboration et Caracterisation d’une Structure Composite (sable et dechets plastiques recycles) : Amelioration de la Resistance par des Charges en Argiles., Bourgogne, 2018.

R. D. C. Cathal McNaughton, Etat des Plastiques, 2018.

W. B. Dalberg, «Pollution Plastique a qui la faute ?,» 2019.

O. S. Gilles DOUBLIER1, Valorisation des déchets de sachets plastiques, Bourkina Faso, 2009.

S.-C. Jean-Christophe, synthèse de polymères thermoplastiques énergétiques riches en azote, Montreal.

M. Hutchinson, Vos dechets et vous, Quebec: Multimondes.

B. J. e. D. JM, Propriete Mecanique des Materiaux, Montréal, Presse internationale polytechnique.

R. R. J. d. D. M. M. Rijalalaina, «Valorisation à l’échelle pilote des déchets plastiques pour la fabrication de matériaux de construction,» vol. 2, 2014.

PAUL, Différents types de Matières plastiques, Cap Science, 2006.

P.E.P, «Les Propriétés des polymères et des composites,» 2005.

P. Nicaud, LES MATIERES PLASTIQUES.

C. WD, Science et génie des matériaux, Dunod.

R. R. (Ed.), Sisal: Agronomy,Production, and Application, New york: Nova Science publishers, 2017.

J.-P. Pascault, Les polymères: Structure, Propriétés, Applications, Paris: Dunod, 2006.

M. Biron, «Matériaux composites à matrice polymère,» 2e éd,Elsevier - Masson, Paris, 2014.

F. L. Mantia, «Handbook of Plastic Recycling,» ChemTec Publishing, Toronto, 2002.

V. Goodship, «Recycled Plastic in Construction,» Woodhead Publishing, Cambridge, 2020.

B. H. ABDELLI Zakaria, «Les effets des déchets de plastique réemployés sur le tranfert d'humidité en phase liquide d'un mortier cimentaire,» 2023.

B. Samir, «Valorisation et recyclage des déchets plastiques dans le béton,» Algérie, 2014.




DOI: http://dx.doi.org/10.52155/ijpsat.v52.1.7378

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Jean Marcel RAKOTONIRINA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.