La Inteligencia Artificial Aplicada A Los Sistemas De Infotainment: Estructura, Evolución Y Líneas De Investigación

Nadia Karina Gamboa-Rosales

Abstract


La aplicación de la inteligencia artificial en los sistemas de infotainment constituye un ámbito de investigación emergente que comienza a adquirir relevancia en la literatura científica a partir de comienzos del siglo XXI. Aunque los sistemas de infotainment cuentan con una evolución previa asociada a tecnologías multimedia y de información, la incorporación de técnicas de inteligencia artificial se manifiesta de forma explícita en la producción científica desde 2002, con un volumen acumulado de 65 publicaciones hasta la fecha. Este contexto justifica la necesidad de analizar cómo se está configurando este campo de estudio y cuál puede ser su impacto potencial en el desarrollo futuro de sistemas inteligentes. El objetivo de este artículo es examinar la evolución inicial, la estructura del conocimiento y las principales líneas de investigación relacionadas con la inteligencia artificial aplicada a los sistemas de infotainment, a partir de la literatura científica indexada. Para ello, se emplea la base de datos Scopus como fuente de información, considerando documentos publicados entre 2002 y 2025 mediante una estrategia de búsqueda que combina términos vinculados a infotainment e inteligencia artificial. La metodología se apoya en técnicas de análisis de la producción científica y mapeo del conocimiento, utilizando el software VOSviewer para la visualización de redes de coocurrencia de palabras clave y la identificación de clústeres temáticos. Los resultados ponen de manifiesto un crecimiento moderado pero sostenido de las publicaciones, con una orientación temática hacia áreas como aprendizaje automático, sistemas de recomendación, interacción multimodal, reconocimiento de voz e infotainment vehicular. El análisis permite comprender el estado actual del conocimiento y anticipar el papel que la inteligencia artificial puede desempeñar en la evolución de los sistemas de infotainment, así como los retos asociados a la gestión de datos, la privacidad del usuario y la integración de arquitecturas inteligentes en un campo aún en fase de consolidación.


Keywords


Sistemas de infotainment; Inteligencia artificial; Interacción hombre–máquina; Aprendizaje automático; Infotainment vehicular; Sistemas

Full Text:

PDF

References


. Abbasi, E., Li, Y., Liu, Y., & Zhao, R. (2024). Effect of human–machine interface infotainment systems and automated vehicles on driver distraction. Human Factors and Ergonomics in Manufacturing & Service Industries, 34(6), 558-571. doi:https://doi.org/10.1002/hfm.21049

. Alipour, D., & Dia, H. (2023). A review of AI ethical and moral considerations in road transport and vehicle automation. Handbook on Artificial Intelligence and Transport, 534-566.

. Ashok, P., & Hallur, G. (2024). Navigating the Infotainment Landscape: Status and Regulations in the Digital Age. Paper presented at the 2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS).

. Baghdadi, M., & Ebert, A. (2025). Human-Centric Design for Next-Generation Infotainment Systems. Paper presented at the International Conference on Human-Computer Interaction.

. Bing, W. (2023). Research on human-computer interaction system of intelligent connected vehicle based on computer AI artificial intelligence technology. Paper presented at the 2023 IEEE International Conference on Image Processing and Computer Applications (ICIPCA).

. Dilshan, K., & Kulawansa, K. (2025). Use of Artificial Intelligence in the Automobile Industry. Paper presented at the International Conference on Information and Communication Technology for Intelligent Systems.

. Ding, Z., Ji, Y., Gan, Y., Wang, Y., & Xia, Y. (2024). Current status and trends of technology, methods, and applications of Human–Computer Intelligent Interaction (HCII): A bibliometric research. Multimedia Tools and Applications, 83(27), 69111-69144. doi:https://doi.org/10.1007/s11042-023-18096-6

. Fayyaz, Y., Almehmadi, A., & El-Khatib, K. (2024). A hybrid artificial intelligence framework for enhancing digital forensic investigations of infotainment systems. Forensic Science International: Digital Investigation, 49, 301751. doi:https://doi.org/10.1016/j.fsidi.2024.301751

. Gamboa-Rosales, N. K., Celaya-Padilla, J. M., Galván-Tejada, C. E., Galván-Tejada, J. I., Luna-García, H., Gamboa-Rosales, H., & López-Robles, J. R. (2022a). Infotainment systems: Current status and future research perspectives toward 5G technologies. Iberoamerican Journal of Science Measurement and Communication, 2(1). doi:https://doi.org/10.47909/ijsmc.147

. Gamboa-Rosales, N. K., Celaya-Padilla, J. M., Galván-Tejada, C. E., Galván-Tejada, J. I., Luna-García, H., Gamboa-Rosales, H., & López-Robles, J. R. (2022b). Infotainment technology based on artificial intelligence: Current research trends and future directions. Iberoamerican Journal of Science Measurement and Communication, 2(1). doi:https://doi.org/10.47909/ijsmc.144

. Gamboa-Rosales, N. K., Celaya-Padilla, J. M., Hernandez-Gutierrez, A. L., Moreno-Baez, A., Galván-Tejada, C. E., Galván-Tejada, J. I., . . . López-Robles, J. R. (2020). Visualizing the intellectual structure and evolution of intelligent transportation systems: A systematic analysis of research themes and trends. Sustainability, 12(21), 8759. doi:https://doi.org/10.3390/su12218759

. Gamboa-Rosales, N. K., & López-Robles, J. R. (2023). Evolving from Industry 4.0 to Industry 5.0: Evaluating the conceptual structure and prospects of an emerging field. Transinformação, 35, e237319. doi:https://doi.org/10.1590/2318-0889202335e237319

. Gamboa-Rosales, N. K., & López-Robles, J. R. (2025). Vehicle-to-vehicle wireless communication protocols: from bibliometric analysis to a conceptual framework and future research directions Digital Twin, Blockchain, and Sensor Networks in the Healthy and Mobile City (pp. 469-489): Elsevier.

. Garg, A., Katiyar, S., Gupta, V., Verma, A. K., & Arya, R. (2024). Artificial Intelligence and Machine Learning Technologies in Internet of Vehicles Recent Trends in Artificial Intelligence Towards a Smart World: Applications in Industries and Sectors (pp. 179-197): Springer.

. Juhana, A., Nurmalasari, R. R., Nurhidayatulloh, N., Anggraeni, A., Padmasari, A. C., & Sari, M. P. (2023). Telematics and Its Multimedia Applications: A Bibliometric Evaluation Over the Last Two Decades and a Half. Paper presented at the 2023 9th International Conference on Wireless and Telematics (ICWT).

. Krstačić, R., Žužić, A., & Orehovački, T. (2024). Safety aspects of in-vehicle infotainment systems: a systematic literature review from 2012 to 2023. Electronics, 13(13), 2563. doi:https://doi.org/10.3390/electronics13132563

. Lim, H. (2024). Toward infotainment services in vehicular named data networking: A comprehensive framework design and its realization. IEEE Transactions on Intelligent Transportation Systems. doi:https://doi.org/10.1109/TITS.2024.3489574

. López-Robles, J. R., Cobo, M. J., Gamboa-Rosales, N. K., & Herrera-Viedma, E. (2020). Mapping the intellectual structure of the international journal of computers communications and control: A content analysis from 2015 to 2019. International Conference on Computers Communications and Control, 296-303. doi:https://doi.org/10.1007/978-3-030-53651-0_25

. López-Robles, J. R., Otegi-Olaso, J. R., Gómez, I. P., & Cobo, M. J. (2019). 30 years of intelligence models in management and business: A bibliometric review. International journal of information management, 48, 22-38. doi:https://doi.org/10.1016/j.ijinfomgt.2019.01.013

. Papandrea, M., Peternier, A., Frei, D., La Porta, N., Gelsomini, M., Allegri, D., & Leidi, T. (2024). V-Cockpit: A Platform for the design, testing, and validation of car infotainment systems through virtual reality. Applied Sciences, 14(18), 8160. doi:https://doi.org/10.3390/app14188160

. Pavaloaia, V.-D., Martin-Rojas, R., & Sulikowski, P. (2025). Advanced Research in Technology and Information Systems. 14(8), 1677. doi:https://doi.org/10.3390/electronics14081677

. Shilaskar, S., Bhatlawande, S., & Gosavi, A. (2022). Context-Aware Voice Recognition System for Car Climate and Infotainment Control Inventive Communication and Computational Technologies: Proceedings of ICICCT 2022 (pp. 127-137): Springer.

. Stappen, L., Dillmann, J., Striegel, S., Vögel, H.-J., Flores-Herr, N., & Schuller, B. W. (2023). Integrating generative artificial intelligence in intelligent vehicle systems. Paper presented at the 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC).

. Tulsiani, J. (2023). Application of Artificial Intelligence in Automobiles: Applications, Challenges and Future Scope. Paper presented at the 2023 2nd International Conference on Automation, Computing and Renewable Systems (ICACRS).

. Tyagi, A. K., Mishra, A. K., & Kukreja, S. (2023). Role of Artificial Intelligence Enabled Internet of Things (IoT) in the Automobile Industry: Opportunities and Challenges for Society. Paper presented at the International Conference on Cognitive Computing and Cyber Physical Systems.

. Van Eck, N., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. scientometrics, 84(2), 523-538. doi:https://doi.org/10.1007/s11192-009-0146-3

. Waltman, L., Van Eck, N. J., & Noyons, E. C. (2010). A unified approach to mapping and clustering of bibliometric networks. Journal of informetrics, 4(4), 629-635. doi:https://doi.org/10.1016/j.joi.2010.07.002

. Yang, C., & Tan, H. (2023). Automotive Head-Up Display Systems: A Bibliometric and Trend Analysis. Paper presented at the International Conference on Human-Computer Interaction.




DOI: http://dx.doi.org/10.52155/ijpsat.v54.1.7802

Refbacks

  • There are currently no refbacks.


Copyright (c) 2026 Nadia Karina Gamboa-Rosales

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.