Optimisation De L'écoulement De Puissance Dans Les Réseaux Electriques En Utilisant La Méthode AIRS (Artificial Immune Recognition System)

Tokiniaina Francky RASOLOFONIRINA, Edmond RANDRIAMORA, Harlin ANDRIATSIHOARANA, Solofohery RAKOTONIAINA, Ndaohialy Manda-vy RAVONIMANANTSOA

Abstract


Optimal power flow (OPF) optimization is a critical step to ensure reliable, economical, and efficient operation of power grids. Due to the nonlinear complexity of the OPF problem, conventional optimization methods often have limitations in terms of convergence and performance. In this study, we propose the application of the artificial immunity algorithm (AIS), inspired by the biological immune system, to solve the OPF problem. The approach is tested on the standard IEEE 30-bus network using the MATPOWER tool in MATLAB. The performance of AIS is compared with other metaheuristic algorithms to evaluate its ability to minimize production costs, improve system stability, and meet operational constraints. The results obtained demonstrate the effectiveness of the AIS approach in terms of accuracy, convergence speed, and robustness, thus confirming its potential for applications in the optimal management of power grids.

Keywords


Optimal power flow, Artificial immunity algorithm, Power grids, Metaheuristic optimization, IEEE 30-bus, MATPOWER

Full Text:

PDF

References


K. Widarsono, F. D. Murdianto, M. Nur, et A. Mustofa, « Optimal power flow using particle swarm optimization for IEEE 30 bus », J. Phys. Conf. Ser., vol. 1595, no 1, p. 012033, juill. 2020, doi: 10.1088/1742-6596/1595/1/012033.

A. Besner, « MONTRÉAL, LE 22 SEPTEMBRE 2017 ».

و. العــلمــي, « الجـمهورية الجزائرية الديمقراطية الشعبية ».

M. A. Benyettou, « Application des systèmes immunitaires artificiels à la détection d’intrusion ».

H. Khelil, « Application des Systèmes Immunitaires Artificiels Pour la Classification Plantaire ».

A. Salhi et T. Bouktir, « Optimisation Multi-Objectifs de l’Ecoulement de Puissance par la Logique Floue associée aux Algorithmes Génétiques ».

D. Saad, D. Tarek, D. Abdellatif, et D. Ahmed, « Optimisation de l’écoulement de puissance par une méthode métaheuristique (technique des abeilles) en présence d’une source renouvelable (éolienne) et des dispositifs FACTS. ».

M. Kadjoudj, T. Bouktir, A. Golea, A. Betka, A. Chaghi, et K. Chikhi, « Contribution à l’application de l’optimisation par des méthodes métaheuristiques à l’écoulement de puissance optimal dans un environnement de l’électricité dérégulé. ».

M. Sasson, “Non linear Programming Solutions for load flow, minimum loss, and economic dispatching problems,” IEEE trans., Vol. Pas-88, N.4, April 1969

M. Huneault and F. D. Galiana, "A Survey of the Optimal Power Flow Literature", IEEE Trans on Power Systems, Vol. 6, No. 2, pp. 762-770, May 1991.

H. W. Dommel, W. F. Tinney, “Optimal Power Flow Solutions,” IEEE Trans on power apparatus and systems, Vol. PAS.87, N..10, pp.1866-1876, October 1968.

D. S. Kirschen, G. Strbac: “Fundamentals of power system economics” Wiley 2004

M. Sasson, "Non linear Programming Solutions for load flow, minimum loss, and economic dispatching problems", IEEE trans. vol. Pas-88, No. 4, pp. 399-409, April 1969.

T. Bouktir and L. Slimani, “Optimal Power Flow of the Algerian Electrical Network using an Ant Colony Optimization Method”, Leonardo Journal of Sciences, ISSN 1583- 0233, p. 43-57, Issue 6, July-December 2005.

Gamal A. Maria, J. A. Findlay, "A Newton Optimal Power Flow Program For Ontario Hydro EMS", IEEE Trans. on Power Systems, vol. PWRS-2,No.3, pp.576-584, August 1987.

M. Sasson, "Non linear Programming Solutions for load flow, minimum loss, and economic dispatching problems", IEEE trans. vol. Pas-88, No. 4, pp. 399-409, April 1969.

Masashi Yoshimi Technical, Swamp, K.S.&Yoshio Izui, optimal economic power dispatch using genetic algorithms, IEEE tran1993-pp157- 162.

J. Tippayachai, W. Ongsakul and I. Nganiroo, “Parallel Micro Genetic Algorithm for Constrained dispatch IEEE Trans.,Power System, vol. 17, pp. 790 - 797, Aug 2002.

U. Aickelin, P. Bentley, S. Cayzer, J. Kim, and J. McLeod. Danger theory : The link between AIS and IDS ? In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 2787, pages 147–155. Springer, 2003.

F. M. Burnet and William B. Bean. The Clonal Selection Theory of Acquired Immunity. Archives of Internal Medicine, 105(6) :973, 6 1960

Ilhem Boussaid. Perfectionnement de métaheuristiques pour l’optimisation continue. Autre. Université Paris-Est; Université des Sciences et de la Technologie Houari-Boumediène (Algérie), 2013.

[Yao et al., 1999] X. Yao, Y. Liu, & G. Lin. Evolutionary programming made faster. IEEE Transactions on Evolutionary Computation, 3: 82–102, 1999.

[Schaffer, 1985] J. D. Schaffer. Multiple objective optimization with vector evaluated genetic algorithms. In Proceedings of the 1st International Conference on Genetic Algorithms, pp. 93–100, Hillsdale, NJ, USA, 1985. L. Erlbaum Associates Inc. ISBN 0-8058-0426-9.

Timmis J., (2000), Artificial Immune Systems: A novel data analysis technique inspired by the immune network theory, PhD, Département d’informatique, université de Wales UK

Watkins A. (2001). AIRS : A resource limited artificial immune classifier. Thèse de l’université de Mississipi du département d’informatique. Mississipi.

Watkins A., Timmis J., Boggess L. (2004). Artificial immune recognition system (AIRS): an immune inspired supervised learning algorithm. Journal de l’acédemie Kluwer Genetic Programming and Evolvable Machines. pp 291-317

Watkins A., Timmis J. (2002). Artificial Immune Recognition System (AIRS) : Revisions and Refinements. 1ére Conférence internationnal du Système immunitaire artificiel ICARIS’2002, pp 173-181, Université de Kent à Canterbury.

T.K. Nagasarkar, M.S. Sukhija Power system analysis, Second Edition, Oxford University Press, 2014

J.C.Das Power System Handbook Volume 2, Load Flow Optimization and Optimal Power Flow, CRC Press, 2018

Jizhong Zhu, Optimisation of power system operation Second Edition, IEEE Press 2015

Antonio Gomez-Exposito, Antonio J. Conejo, Claudio Canizares, Electric Energy Systems, Analysis and Operation, CRC Press 2009

Allen J. Wood, Bruce F. Wollenberg, Gerald B. Sheblé, Power generation, operation, and control IEEE Press 2014.

G. Berthiau et P. Siarry, Etat de l'art des méthodes d'optimisation globale, RAIRO-Operations Research, 35 (2001) 329-365

Y. Collette et P. Siarry, Optimisation multiobjectif (Eyrolles, 2002).

S.M. Saït et H. Youssef, Iterative computer algorithms with applications in engineering. (IEEE Computer Society Press, 1999)




DOI: http://dx.doi.org/10.52155/ijpsat.v52.1.7394

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 RASOLOFONIRINA Tokiniaina Francky

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.