Classification of tropical cyclones observed by satellites in the Southwest Indian Ocean basin using the 2D-CNN model
Abstract
Keywords
Full Text:
PDFReferences
A. M. F. Lagmay, K. A. S. Aracan, and V. Malano, “Impacts of Typhoon Haiyan (Yolanda) and local perspectives on disaster risk reduction and climate change adaptation,” Int. J. Disaster Risk Reduct., vol. 13, pp. 335–347, 2015. [Online]. Available: https://doi.org/10.1016/j.ijdrr.2015.07.009
K. Emanuel, Divine Wind: The History and Science of Hurricanes. Oxford, U.K.: Oxford Univ. Press, 2005.
M. Ranaivoson Rapatsalahy, “Caractérisation des impacts des cyclones sur le littoral du sud-ouest de l'océan Indien par télédétection,” Projet de thèse, Université de La Réunion, 2023. [Online]. Available: https://theses.fr/s386160Theses
Météo-France, “Centre Météorologique Régional Spécialisé- La Réunion,” Mar. 21, 2022. [Online]. Available: https://meteofrance.re/fr/actualites/centre-meteorologique-regional-specialise-la-reunionmeteofrance.re
Organisation météorologique mondiale, The SouthWest Indian Ocean cyclone basin, 2013. [Online]. Available: https://severeweather.wmo.int/TCFW/RAI_Training/Cyc_Bassin_SWI_oct2013_LANGLADE.pdf
F. Roux and N. Viltard, “Les cyclones tropicaux,” La Météorologie, vol. 38, no. 2, pp. 45–60, 2002.
A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” Adv. Neural Inf. Process. Syst., vol. 25, pp. 1097–1105, 2012. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
Météo-France, “Prévision saisonnière d'activité cyclonique dans le Sud-Ouest de l'océan Indien : Saison 2024-2025,” Oct. 31, 2024. [Online]. Available: https://meteofrance.re/fr/climat/prevision-saisonniere-dactivite-cyclonique-dans-le-sud-ouest-de-locean-indien-saison-2024
Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA, USA: MIT Press, 2016. [Chap. 8: Optimization for Training Deep Models, Online]. Available: https://www.deeplearningbook.org/
L. Prechelt, “Early stopping — But when?,” in Neural Networks: Tricks of the Trade, G. Orr and K.-R. Müller, Eds. Berlin, Germany: Springer, 1998, pp. 55–69. [Online]. Available: https://doi.org/10.1007/3-540-49430-8_3
A. Krogh and J. A. Hertz, “A simple weight decay can improve generalization,” in Adv. Neural Inf. Process. Syst., pp. 950–957, 1992.
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the Inception Architecture for Computer Vision,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2016, pp. 2818–2826. [Online]. Available: https://doi.org/10.1109/CVPR.2016.308
L. Li, Z. Shuai, J. Hu, and Y. Zhang, “Classification of Tropical Cyclone Intensity Based on Deep Learning and YOLO V5,” in Advances in Artificial Intelligence and Security (ICAIS 2022), X. Sun, X. Zhang, Z. Xia, and E. Bertino, Eds., Commun. Comput. Inf. Sci., vol. 1586, pp. 280–291. Springer, 2022. [Online]. Available: https://doi.org/10.1007/978-3-031-06767-9_23
C. Kumler-Bonfanti, J. Stewart, D. Hall, and M. Govett, “Tropical and Extratropical Cyclone Detection Using Deep Learning,” arXiv preprint arXiv:2005.09056, 2020. [Online]. Available: https://arxiv.org/abs/2005.09056
C. Kar and S. Banerjee, “Tropical Cyclones Classification from Satellite Images Using Blocked Local Binary Pattern and Histogram Analysis,” in Soft Computing Techniques and Applications, S. Borah, R. Pradhan, N. Dey, and P. Gupta, Eds. Springer, vol. 1248, pp. 431–440, 2021. [Online]. Available: https://doi.org/10.1007/978-981-15-7394-1_38
DOI: http://dx.doi.org/10.52155/ijpsat.v51.2.7327
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Harimino Andriamalala RAJAONARISOA

This work is licensed under a Creative Commons Attribution 4.0 International License.