Singular Value Decomposition Guided Image Compression
Abstract
Keywords
Full Text:
PDFReferences
Anowar, F., Sadaoui, S., & Selim, B. ( 2021). “Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE),” Computer Science Review, 40, 100378.
Tanwar, S., Ramani, T., & Tyagi, S. (2017). “Dimensionality reduction using pca and svd in big data: A comparative case study,” International conference on future internet technologies and trends, Springer, 116–125.
Masoud, M., Jaradat, Y., Rababa, E., and Manasrah, A. (2021). “Turnover prediction using machine learning: Empirical study,” International Journal of Advance Software Computer Application, 13(1).
Wang, Y., & Zhu, L. (2017). “Research and implementation of svd in machine learning,” IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS), 471–475.
Nie, Z., & Zhao, X. (2016). “Similarity of signal processing effect between pca and svd and its mechanism analysis,” Journal of vibration and shock, 35(2), 12–17.
Schmidt, O. T., & Colonius, T. (2020). “Guide to spectral proper orthogonal decomposition,” Aiaa journal, vol. 58(3), 1023–1033.
Bai, Z., Kaiser, E., Proctor, J. L., Kutz, J. N., & Brunton, S. L. (2020). “Dynamic mode decomposition for compressive system identification,” AIAA Journal, 58(2), 561–574.
Anton, H., & Rorres, C. (2019). Elementary Linear Algebra, Application version, Wiley, USA, 11th Edition.
Brunton, S. L., & Kutz, J. N. (2019). Data Driven Science & Engineering Machine Learning, Dynamical Systems, and Control, Cambridge University Press, UK.
Cunningham J. P., & Ghahramani, Z. (2015). “Linear dimensionality reduction: Survey, insights, and generalizations,” The Journal of Machine Learning Research, 16(1), 2859–2900.
DOI: http://dx.doi.org/10.52155/ijpsat.v47.2.6746
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 MD. ASHRAFUL ALAM

This work is licensed under a Creative Commons Attribution 4.0 International License.