Optimization of Anaerobic Co-Digestion of Canna Indica Rhizome and Cow Manure
Abstract
This study investigates the potential of Canna indica rhizome as a promising substrate for biogas production through anaerobic co-digestion with cow manure. Experimental results demonstrate that a 50:50 mixture of Canna indica rhizome and cow manure optimizes biogas yield, achieving a methane content of 64.48%. This synergistic effect is attributed to the complementary chemical composition of the substrates.
To provide an initial estimate of biogas production, an existing mathematical model was adapted without significant modifications. Despite its original design for different substrates, the model exhibited satisfactory performance in predicting biogas production trends, highlighting the general applicability of its underlying principles to this specific co-digestion system.
Keywords
Full Text:
PDFReferences
. Abdoli, MA, L. Amiri, A. Baghvand, J. Nasiri et E. Madadian (2014) Production de méthane à partir de la co-digestion anaérobie du maïs et de la bouse de vache, Environmental Progress & Sustainable Energy 33(2) :597-601.
. Achinas, S., Krooneman, J., & Euverink, G. (2019). Enhanced biogas production from the anaerobic batch treatment of banana peels. Engineering, 1(10), Article 1. https://doi.org/10.1016/j.eng.2019.10.001Engineering, 5, 970–978. https://doi.org/10.1016/j.eng.2018.11.036.
. Adelard, L., Poulsen, T. G. and Rakotoniaina, V. Biogas and methane yield in response to co-and separate digestion of biomass wastes. Waste Management & Research 33(1), 55-62 (2015).
. Akindele, O. O., & Adesina, O. (2019). Evaluation of biogas production from co-digestion of pig dung, water hyacinth and poultry droppings. Waste Disposal & Sustainable Energy, 1(4), 271-277.
. Ali, S. S., Elsamahy, T., Abdelfattah, A., Mustafa, A. M., Khalil, M. A., Mastropetros, S. G., Kornaros, M., Sun, J., & Azab, M. (2022). Exploring the potential of anaerobic co-digestion of water hyacinth and cattle dung for enhanced biomethanation and techno-economic feasibility. Fuel, 329, 125397
. Angelidaki, I., et al. (2009). Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Science and Technology, 59(5), 927-934.
. Appels, L., Baeyens, J., Degréve, J., & Dewil, R. (2008). Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 34(6), 755-781. https://doi.org/10.1016/j.pecs.2008.06.002
. Atelge, M.R., et al. (2020). Biogas production from organic waste: recent progress and perspectives. Waste and Biomass Valorization, 11(3), 1019-1040.
. Awasthi, S. K., Joshi, R., Dhar, H., Verma, S., Awasthi, M. K., Varjani, S., Sarsaiya, S., Zhang, Z. and Kumar, S. (2018). Improving methane yield and quality via co-digestion of cow dung mixed with food waste. Bioresource technology, 251, 259-263. https://doi.org/10.1016/j.biortech.2017.12.063
. Batstone, D. J., & Virdis, B. (2021). "Anaerobic digestion: A complex and dynamic system." Water Research, 187, 116398.
. Bernet, N. (2015, July). Principes et application de la digestion anaérobie pour la production d’énergie. Colloque International “Biodiversité et changements globaux : valorisation des effluents des industries, des résidus agro-pastoraux et forestiers”, Agence Universitaire de la Francophonie (AUF). Ngaoundéré, Cameroun. ffhal-02743093f.
. Cárdenas-Cleves, N. L., Marmolejo-Rebellón, L. F., & Torres-Lozada, P. (2018). Improvement of the biochemical methane potential of food waste by means of anaerobic co-digestion with swine manure. Brazilian Journal of Chemical Engineering, 35(4), 1219-1229. doi:10.1590/0104-6632.20180354520170297
. De Vrieze, J., Nielsen, P. H., & Batstone, D. J. (2020). "Anaerobic digestion: From waste to resource." Nature Reviews Microbiology, 18(11), 649-662.
. Demirel, B., & Scherer, P. (2008). The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Reviews in Environmental Science and Bio/Technology, 7(2), 173-190.
. Fekadu, M. (2014). Biogas production from Water Hyacinth (Eichhornia crassipes) Co-digestion with cow-dung. MSc Dissertation, Department of Biology, Haramaya University.
. González, R., Carrillo Peña, D., & Gómez, X. (2022). Anaerobic Co-Digestion of Wastes: Reviewing Current Status and Approaches for Enhancing Biogas Production. Applied Sciences, 12(17), 8884. https://doi.org/10.3390/app12178884
. Gunaseelan, V. N. (2009). Predicting ultimate methane yields of Jatropha curcus and Morus indica from their chemical composition [Short Communication]. Bioresource Technology, 100(13), 3426-3429.
. International Energy Agency. (2023). Outlook for biogas and prospects for organic growth. https://iea.blob.core.windows.net/assets/03aeb10c-c38c-4d10-bcec-de92e9ab815f/Outlook_for_biogas_and_biomethane.pdf
. Ionescu, M., Dincă, M. N., Moiceanu, G., & Zăbavă, B. Ș. (2023). Anaerobic Co-Digestion: A Way to Potentiate the Synergistic Effect of Multiple Substrates and Microbial Diversity. Energies
. Ionescu, M., Dincă, M. N., Moiceanu, G., & Zăbavă, B. Ș. (2023). Anaerobic Co-Digestion: A Way to Potentiate the Synergistic Effect of Multiple Substrates and Microbial Diversity. Energies.
. Karki, R., Chuenchart, W., Surendra, K. C., Shrestha, S., Raskin, L., Sung, S., Hashimoto, A., & Khanal, S. K. (2021). Anaerobic co-digestion: Current status and perspectives. Bioresource Technology, 330, 125001. https://doi.org/10.1016/j.biortech.2021.125001
. Kostopoulou, E., Chioti, A. G., Tsioni, V., & Sfetsas, T. (2023). Microbial dynamics in anaerobic digestion: A review of operational and environmental factors affecting microbiome composition and function. Preprints. https://doi.org/10.20944/preprints202306.0299.v1
. Labatut, R. A., Angenent, L. T., & Scott, N. R. (2019). "Anaerobic digestion: New trends enhancing process performance and application." Current Opinion in Biotechnology, 56, 174-181.
. Labatut, R. A., Angenent, L. T., & Scott, N. R. (2020). "Microbial ecology of anaerobic digestion: The key players and their roles." Microbiome, 8(1), 1-18.
. Mata-Alvarez, J., Cecchi, F., Pavan, P., & Romero, L. I. (1992). Anaerobic co-digestion of organic solid wastes. Water Science and Technology, 26(9-11), 2169-2177. https://doi.org/10.2166/wst.1992.0190
. Mata-Alvarez, J., Mace, S., & Llabres, P. (2000). Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresource Technology, 74(1), 3-16. https://doi.org/10.1016/S0960-8524(99)00145-7
. Mata-Alvarez, J., Mace, S., & Llabrés, P. (2014). "Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives." Bioresource Technology, 175, 3-12.
. MathWorks. (2018). Solving optimization problems with MATLAB. Retrieved from https://www.matlabexpo.com/content/dam/mathworks/mathworks-dot-com/images/events/matlabexpo/us/2018/master-class-solving-optimization-problems-with-matlab.pdf
. Mel, M., Ihsan, S. I. and Setyobudi, R. H. (2015). Process improvement of biogas production from anaerobic co-digestion of cow dung and corn husk. Procedia Chemistry, 14, 91-100. https://doi.org/10.1016/j.proche.2015.03.014
. Meng, H. (2019). Anaerobic co-digestion: Design of substrate mixtures and the impacts on process performance (Doctoral dissertation, The University of Queensland).
. Moletta, R., & Verstraete, W. (2008). La méthanisation dans la problématique énergétique et environnementale. In R. Moletta (Ed.), La méthanisation (pp. 3–8). Paris, France : Editions TEC & DOC.
. Montesdeoca-Pichucho, N. B., Garibaldi-Alcívar, K., Baquerizo-Crespo, R. J., Gómez-Salcedo, Y., Pérez-Ones, O., & Pereda-Reyes, I. (2023). Synergistic and antagonistic effects in anaerobic co-digestion. Analysis of the methane yield kinetics. Revista Facultad de Ingeniería, Universidad de Antioquia, 107, 80-87.
. Muronda, M. T., & Gotore, O. (2023). Revealing sustainable energy opportunities through the integrated use of Canna indica biomass and buffalo manure for biogas generation. Maejo International Journal of Energy and Environmental Communication, 5(2), 41-46. https://ph02.tci-thaijo.org/index.php/MIJEEC
. Ojo, O. M., Babatola, J. O., Adesina, A. A., Akinola, A. O., & Lafe, O. (2018). Synergistic Effect of co-digesting different mix ratios of Water Hyacinth and Cow-dung for Biogas production. FUTAJEET, 12(1), 54–59.
. Pongthornpruek, S., & Watmuang, S. (2016). Biogas production from anaerobic co-digestion of food waste mixed with domestic wastewater. Applied Mechanics and Materials, 855, 103-107.
. Rabii, A., Aldin, S., Dahman, Y., & Elbeshbishy, E. (2019). A Review on Anaerobic Co-Digestion with a Focus on the Microbial Populations and the Effect of Multi-Stage Digester Configuration. Energies.
. Rajaonahy, M. R., Torrijos, M., Steyer, J. P., Sousbie, P., Razafinjato, V., & Rakotondramiarana, H. T. (2019). Biogas production by anaerobic digestion and co-digestion of some large available organic solid wastes of Madagascar. International Journal of Scientific & Engineering Research, 10(6), 1071-1080.
. Salim, A. A., Isma’il, M., Zubairu, S. M., Ahmed, A., Hassan, A. W., Ityonum, B. I., & Dayyabu, F. (2023). Exploring the suitability of fruit and vegetable wastes for biomethane and electricity generation. FUDMA Journal of Sciences, 7(6), 2138. https://doi.org/10.33003/fjs-2023-0706-2138.
. Surendra, K.C., et al. (2014). Biogas as a sustainable energy source for developing countries: Opportunities and challenges. Renewable and Sustainable Energy Reviews, 31, 846-859.
. Xie, T., Xie, S., Sivakumar, M., & Nghiem, L. D. (2017). Relationship between the synergistic/antagonistic effect of anaerobic co-digestion and organic loading. International Biodeterioration & Biodegradation. https://doi.org/10.1016/j.ibiod.2017.03.025
. Xu, F., Li, Y., & Zhang, R. (2021). "Anaerobic digestion of organic wastes: Challenges and opportunities." Renewable and Sustainable Energy Reviews, 135, 110386.
. Yadav, S., et al. (2019). A review on biogas production from different feedstocks and their co-digestion. Environmental Technology & Innovation, 15, 100422.
. Zhang Y., Banks C.J. and Heaven S. (2012). Co-digestion of source segregated domestic food waste to improve process stability. Bioresour. Technol., 114, 168–178
DOI: http://dx.doi.org/10.52155/ijpsat.v46.2.6594
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Eulalie Odilette RAFANJANIRINA

This work is licensed under a Creative Commons Attribution 4.0 International License.

















