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Abstract – The electrification of semi-arid regions confronts unprecedented reliability challenges stemming from extreme climate 
variability challenges that climate change continues to intensify at an accelerating pace. Conventional optimization methods for PV-diesel 
hybrid systems often fail to account for these deep uncertainties, leading to designs that are either unreliable or economically unviable. 
This paper introduces a novel Adaptive Multi-Objective Genetic Algorithm with an Evolving Fitness Function (AMOGA-EFF) to optimize 
system design for long-term resilience. The framework is uniquely built on a comprehensive uncertainty analysis, integrating high-
resolution stochastic modeling from 20-year historical weather data with an ensemble of CMIP6 climate projections (SSP2-4.5 and SSP5-
8.5). To quantify performance under these stresses, we introduce two new metrics: the Climate Robustness Index (CRI) and the Economic 
Vulnerability Factor (EVF). 

The AMOGA-EFF approach was rigorously tested through extensive simulations for three distinct sites: Ouagadougou (Burkina Faso), 
Jodhpur (India), and Petrolina (Brazil); where it consistently demonstrated superior performance. It yields a 35-42% improvement in 
system resilience with only a 6-11% increase in the levelized cost of energy (LCOE) compared to the standard NSGA-II algorithm. Under 
the high-emission SSP5-8.5 scenario, optimized systems maintain 89% availability during extreme weather events, in stark contrast to 
the 61% achieved by conventional deterministic designs. Furthermore, the resulting configurations achieve a 13.3% reduction in total 
life-cycle cost, primarily through a 22.1% decrease in fuel consumption. This work provides a robust methodological blueprint for 
designing resilient and cost-effective energy infrastructures in climate-vulnerable regions worldwide. 

Keywords: Multi-objective optimization; PV-diesel hybrid; Climate change; CMIP6; Semi-arid regions; Adaptive genetic algorithm; 
Stochastic optimization 

 
 

1. INTRODUCTION 

The electrification of semi-arid regions, home to nearly two billion people, faces the challenge of high solar variability (CV > 30%), 
a factor amplified by climate change. Current PV-diesel optimization methodologies fail to simultaneously integrate historical 
uncertainty and CMIP6 projections, resulting in undersized systems. This paper presents an adaptive genetic algorithm that 
incorporates 10,000 stochastic scenarios and climate projections, along with two new resilience metrics (CRI, EVF). 

2. LITERATURE REVIEW 

Current optimization approaches for hybrid systems are constrained by three major research gaps. First, conventional multi-
objective algorithms such as NSGA-II, MOPSO, and GA-PSO achieve localized improvements (18-22%) but rely on deterministic 
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climate data; consequently, they ignore real-world climate variability. Second, existing stochastic approaches are either partial (e.g., 
considering only load uncertainty), computationally prohibitive or statistically insufficient. Third, the integration of climate change 
remains rudimentary, typically neglecting the non-linear dynamics captured in CMIP6 projections. 
To date, no single study has simultaneously integrated high-resolution historical variability, statistically downscaled CMIP6 
projections, and multi-site operational validation. This constitutes a critical methodological gap for achieving resilient 
electrification. 

3. METHODOLOGIES 

3.1 Study Sites and Data 

To ensure the robustness and generalizability of our findings, three representative sites were selected based on their Köppen-Geiger 
classification (BSh - hot semi-arid climate), geographical distribution, and data availability: 
Site 1: Ouagadougou, Burkina Faso (12.35°N, 1.53°W) 

 Population served: 500 households 
 Load profile: 680 kWh/day (peak: 85 kW) 
 Existing system: 150 kWp PV + 120 kW diesel (operational since 2018) 

Site 2 : Jodhpur, India (26.30°N, 73.02°E) 

 Population served: 350 households + irrigation pumps 
 Load profile: 520 kWh/day (peak: 75 kW) 
 Existing system: 100 kWp PV + 100 kW diesel (operational since 2019) 

Site 3: Petrolina, Brazil (9.39°S, 40.50°W) 

 Population served: 400 households + agro-processing unit 
 Load profile: 750 kWh/day (peak: 95 kW) 
 Existing system: 180 kWp PV + 150 kW diesel (operational since 2017) 

Historical climate data for the 2003-2022 period were obtained from SYNOP/METAR stations, NASA POWER, and the ERA5 
reanalysis dataset.  
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Table 1: Climate characteristics of study sites (2003-2022 average) 

Parameter 
Ouagadougou Jodhpur Petrolina 

Mean CV (%) Mean CV (%) Mean CV (%) 

Daily GHI (kWh/m²) 5.92 28.3 5.64 31.2 5.78 25.7 

Temperature (°C) 28.7 12.4 26.3 18.6 27.1 10.2 

Dust events/year 42 35.1 58 41.3 18 28.6 

Extreme event frequency* 0.12 - 0.15 - 0.09 - 

*Defined as consecutive days with GHI < 3rd percentile 

3.2 System Modeling and Energy Management 

PV Model with Dust Soiling Effects:  

𝑃௉௏(𝑡) = 𝑁௉௏  . 𝑃ௌ்஼  .
ீ೅(௧)

ீೄ೅಴
 . [1 + 𝛼௉(𝑇஼(𝑡) − 𝑇ௌ்஼)] . 𝜂ௗ௨௦௧(𝑡) . 𝜂ௗ௘௚(𝑡)  (1) 

Where 𝜂ௗ௨௦௧(𝑡) = 1 −  𝛽ௗ  . 𝑡ௗ  si 𝑡ௗ  < 𝑡௖௟௘௔௡ , with a site-specific dust coefficient 𝛽ௗ ranging from 0,003 − 0,008 per day. 
Diesel Generator Model with Environmental Corrections:  

𝐹(𝑡) = ൫𝑎଴ + 𝑎ଵ .  𝑃௚௘௡ +  𝑎ଶ .  𝑃௚௘௡
ଶ + 𝑎ଷ .  𝑃௚௘௡

ଷ ൯. 𝐾௔௟௧  .  𝐾௧௘௠௣ (𝑇). 𝐾௔௚௘  (2) 

Battery Model with Temperature-Dependent Aging: 
ௗௌ௢ு

ௗ௧
=  −𝑘௖௔௟  . 𝑒𝑥𝑝 ቀ

ିாೌ

ோ .்್ೌ೟
ቁ −  𝑘௖௬௖  . √𝐷𝑜𝐷. |𝐼௕௔௧|    (3) 

Energy management strategy:  
Our energy management strategy employs a hierarchical rule-based framework that prioritizes photovoltaic self-consumption while 
treating diesel generation as the option of last resort. The dispatch priorities are as follows: meet the load with PV; manage excess 
generation; manage energy deficit; diesel generator as last resort. 

3.3 Climate Scenario Generation with CMIP6 

We employed a hybrid approach combining Markov Chain Monte Carlo (MCMC) with Copula functions to preserve both temporal 
autocorrelation and inter-variable dependencies in the climate data. The process involves several rigorous steps: historical data 
analysis; dependency modeling; weather regime identification; stochastic scenario generation. 
We utilized 5 global climate models from CMIP6: CNRM-CM6-1, GFDL-ESM4, IPSL-CM6A-LR, MRI-ESM2-0, UKESM1-0-
LL provide SSP2-4.5 and SSP5-8.5 projections. 

3.4 Multi-Objective Optimization Problem Formulation 

Decision Variables: 𝑥 = [𝑁௉௏  , 𝐶௕௔௧ , 𝑃ௗ௜௘௦௘௟  , 𝑁௖௟௘௔௡  ]்       (4) 
Objective Functions: 
Expected Levelized Cost of Energy (LCOE): 

𝐹ଵ(𝑥) =  𝔼௦∈ௌ ൥
∑
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(భశೝ)೟
೅
೟సబ

∑
ಶೞ೐ೝೡ೐೏,೟(ೞ)
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೅
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൩      (5) 

Expected Loss of Power Supply Probability (LPSP): 

𝐹ଶ(𝑥) =  𝔼௦∈ௌ ൤
∑ ଵൣ௉ೞೠ೛೛೗೤(௛,௦)ழ௉೗೚ೌ೏(௛)൧ఴళలబ

೓సభ

଼଻଺଴
൨  (6) 

Climate Robustness Index (CRI), our proposed metric: 

𝐹ଷ(𝑥) =
௏௔ோబ,వఱ(௅௉ௌ௉)ି𝔼[௅௉ௌ௉]

𝔼[௅௉ௌ௉]
×

௠௔௫ೞ∈ೄ೐ೣ೟ೝ೐೘೐
ൣ஽௨௥௔௧௜௢௡೑ೌ೔೗ೠೝ೐൧

ଵ଺଼
   (7)  

Economic Vulnerability Factor (EVF), our proposed metric: 
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𝐹ସ(𝑥) =  
ఙಽ಴ೀಶ

ఓಽ಴ೀಶ
× ቀ1 +

௅஼ைா಴಴,మబఱబି௅஼ைா೓೔ೞ೟

௅஼ைா೓೔ೞ೟
ቁ      (8) 

3.5 Algorithmic AMOGA-EFF:  

The proposed AMOGA-EFF algorithm extends the NSGA-II framework with four key innovations. Its operational logic is 
structured as follows:  

 Initialization  

 Adaptive Control  

 Progressive Fitness Evolution  

 Evolutionary Operations and Selection 

4. RESULTS  

This section presents the multifaceted outcomes of our study. The analysis is structured to first quantify the magnitude of the climatic 
challenge by examining both the historical variability of meteorological conditions and the projected future changes from CMIP6 
models. Establishing this context of deep uncertainty underscores the necessity for the robust optimization framework we have 
developed. Subsequently, we evaluate the computational performance of our proposed AMOGA-EFF algorithm before delving into 
a detailed analysis of the optimal solutions, their trade-offs, and their resilience in the following subsections. 

4.1 Climate Variability Analysis 

The analysis of 20-year historical data reveals significant inter-annual variability across all sites, with distinct climatic patterns. As 
illustrated in Figure 1, the coefficient of variation (CV) for annual Global Horizontal Irradiance (GHI) reaches 31.2% in Jodhpur, a 
value substantially higher than the 15-20% range typically assumed in conventional system sizing literature. Extreme years exhibit 
deviations from the long-term mean ranging from -23% to +19%. This high degree of observed variability underscores the 
limitations of deterministic approaches and justifies the necessity for a robust stochastic optimization framework. 

 

Figure 1: Inter-annual Variability of Solar Resources 
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Table 2: Statistical Characteristics of Climate Variability 

Site GHI CV (%) 
Consecutive Low-

GHI Days* 
Dust Storm Days 

Heat Wave 
Days** 

Ouagadougou 28,3 12,4 ± 5,2 42 ± 15 28 ± 11 

Jodhpur 31,2 18,6 ± 7,8 58 ± 24 45 ± 18 

Petrolina 25,7 8,3 ± 3,1 18 ± 8 31 ± 13 

**GHI < 3 kWh/m²/day for >3 consecutive days. *Temperature > 40°C. 

4.2 Impact of CMIP6 Climate Projections 

The climate projections reveal divergent future trends across the study sites, as shown in Figure 2. By 2050, all sites are projected 
to become warmer while receiving less solar radiation. The compound effect of increased ambient temperature and reduced GHI is 
particularly concerning, projected to decrease PV energy yield by 8-12% under the SSP5-8.5 high-emission scenario. This 
temperature rise also accelerates battery degradation exponentially. These projections highlight the critical vulnerability of systems 
designed solely on historical data and affirm the importance of integrating forward-looking climate signals into the optimization 
process. 

Table 3: CMIP6 Projected Changes by 2050 (Ensemble Mean ± Std Dev) 

Site ΔT SSP2-4.5 (°C) ΔT SSP5-8.5 (°C) ΔGHI SSP2-4.5 (%) ΔGHI SSP5-8.5 (%) 

Ouagadougou +2,1 ± 0,4 +3,2 ± 0,6 -3,8 ± 2,1 -5,7 ± 3,2 

Jodhpur +2,3 ± 0,5 +3,5 ± 0,7 -2,2 ± 1,8 -4,1 ± 2,8 

Petrolina +1,9 ± 0,3 +2,8 ± 0,5 -4,5 ± 2,5 -6,3 ± 3,5 
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Figure 2: CMIP6 projected changes in solar resources and temperature 

4.3 Algorithm Performance Analysis 

Convergence Characteristics 
 AMOGA-EFF demonstrates superior convergence compared to the benchmark algorithms: 

Table 4: Convergence metrics (mean ± std dev over 30 runs) 

Algorithm Generations to 90% HV Final HV IGD Spread 

AMOGA-EFF 98 ± 12 0,782 ± 0,018 0,0124 ± 0,0021 0,412 ± 0,038 

NSGA-II 186 ± 28 0,725 ± 0,031 0,0231 ± 0,0045 0,521 ± 0,062 

MOPSO 165 ± 22 0,738 ± 0,026 0,0198 ± 0,0038 0,486 ± 0,055 

MOEA/D 142 ± 19 0,751 ± 0,022 0,0165 ± 0,0032 0,463 ± 0,048 

Statistical significance: p < 0.001 (Kruskal-Wallis test) 
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Figure 3: Hypervolume evolution comparison 

The algorithm (AMOGA-EFF) finds a high-quality solution more rapidly, in 120 generations versus >200 for NSGA-II, with 47% 
fewer evaluations. The fitness evolution strategy avoids premature convergence, making stochastic optimization practically viable 
for real-world projects. 

4.4 Pareto Front Analysis 

Solution Characteristics  
The Pareto fronts, visualized in Figure 4, show a clear dominance of AMOGA-EFF solutions in the high-resilience region (CRI < 
0.15). The analysis of these trade-offs reveals the direct cost of reliability. For instance, the "Minimum Cost" solution is the cheapest 
but experiences power outages 4.2% of the time. Conversely, the "Resilient" solution is 37% more expensive but is nearly infallible 
(0.5% outage rate).  

Table 5: Representative Solutions from the AMOGA-EFF Pareto Front (Ouagadougou) 

Solution 
PV 

(kWp) 
Batterie 
(kWh) 

Diesel (kW) 
LCOE 

($/kWh) 
LPSP 
(%) 

CRI EVF RF (%)* 

A (Min Cost) 156 380 100 0,138 4,2 0,68 0,42 72 

B (Balanced) 224 650 100 0,162 1,8 0,35 0,28 85 

C (Resilient) 288 980 120 0,189 0,5 0,12 0,15 93 

D (Max Green) 352 1250 75 0,215 0,3 0,08 0,12 96 

*RF: Renewable Fraction 
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Figure 4: 3D Pareto fronts for three sites 

4.5 Comparative Analysis with Literature 

4.5.1 Comparison with Recent Studies  
We compare our results against three recent studies conducted on similar sites. 
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Table 6: Performance Comparison with Literature 

Study Location Method 
LCOE 

($/kWh) 
LPSP (%) 

Climate 
Scenarios 

Validation 

This work Multi-site 
AMOGA-

EFF 
0,162 ± 0,024 1,8 ± 0,6 

10 000 + 
CMIP6 

Simulation 

Ramli et al. 
[6] 

Saudi Arabia MOPSO 0,185 ± 0,031 2,5 ± 0,8 TMY Simulation 

Zhang et al. 
[7] 

China GA-PSO 0,171 ± 0,028 2,2 ± 0,7 
100 

scenarios 
Simulation 

Sawle et al. 
[11] 

India NSGA-II 0,195 ± 0,035 3,1 ± 1,2 
TMY + 

sensitivity 
Simulation 

4.5.2 Analyse Comparative et Vérification du Modèle 

To verify the internal consistency of our model and quantify the impact of its detailed physical components, a comparative analysis 
was performed against a baseline model. As illustrated in Figure 5, the outputs of both models are strongly correlated, with R² 
values exceeding 0.94 for energy production and fuel consumption. However, the analysis reveals a systematic deviation: our 
advanced model consistently predicts lower energy yields and higher fuel consumption. This gap reflects the realistic impact of 
degradation phenomena such as dust soiling and thermal aging which are overlooked by the baseline approach. This verification 
confirms that high-fidelity modeling is essential to prevent system under sizing and ensure a robust design. 
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Figure 5: Model Comparison - Advanced (AMOGA-EFF) vs. Baseline Performance 

Table 7: Deviation Metrics between Advanced and Baseline Models 

Site 
Relative deviation 

energy (%) * 
Relative Deviation Fuel 

(%) * 
Absolute Deviation 
Availability (%) ** 

Ouagadougou 8,2 11,3 3,1 

Jodhpur 9,6 12,8 3,8 

Petrolina 7,4 10,2 2,9 

*Interpreted as the Root Mean Square Deviation (RMSD) between the two models' predictions. **Interpreted as the Mean Absolute 
Deviation (MAD) between the two models' predictions. 

4.6 Resilience Under Extreme Events 

4.6.1 Performance during historical extreme events 
The system's behavior was analyzed under the conditions of documented historical extreme weather events. During a simulated 
three-day dust storm, a system designed with the AMOGA-EFF method would have maintained 92% availability, significantly 
outperforming designs based on the NSGA-II (71%) and HOMER (76%) algorithms. 

Table 8: Performance during historical extreme events 

Event Type Duration AMOGA-EFF NSGA-II HOMER 

Dust storm (2019) 72h 92% availability 71% 76% 

Heat wave (2020) 120h 88% availability 64% 69% 

Low irradiation (2018) 168h 85% availability 58% 62% 

4.6.2 Performance Under Climate Change Scenarios 

The AMOGA-EFF-designed system maintains over 80% availability under all CMIP6 scenarios through 2050, whereas 
conventional approaches fall below 70%. 
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Figure 6: System Resilience Under CMIP6 Scenarios 

4.7 Economic Analysis 
4.7.1 Life-cycle cost analysis 

Table 9: 25-Year Life-Cycle Costs (million USD, NPV at 5% discount) 

Component AMOGA-EFF NSGA-II Difference 

Initial Capital 0,485 0,428 +13,3% 

O&M 0,156 0,162 -3,7% 

Fuel 0,892 1,145 -22,1% 

Replacement 0,238 0,295 -19,3% 

Salvage Value -0,042 -0,035 +20,0% 

Total LCC 1,729 1,995 -13,3% 

 
Although our resilient design costs 13.3% more upfront, it slashes fuel expenses by 22.1%. This makes the entire project 13.3% 
cheaper over its 25-year lifespan. 

4.7.2 Sensitivity Analysis  

The sensitivity analysis, presented in the tornado diagram in Figure 7, shows that the fuel price is the most dominant factor affecting 
the Levelized Cost of Energy (LCOE), with a ±20% variation in price causing a -18% to +23% change in LCOE. This is followed 
by the discount rate. 
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Figure 7: LCOE Sensitivity Analysis (Tornado Diagram) 

4.8 Multi-Criteria Decision Analysis 

To objectively select the single best design, we used the TOPSIS ranking method. The outcome, shown in Table 10, is clear: our 
"Balanced" AMOGA-EFF solution ranks first, offering the best all-around compromise between cost, reliability, and resilience 

Table 10: MCDM ranking of solutions 

Solution 
LCOE 
Weight 

LPSP 
Weight 

CRI 
Weight 

EVF 
Weight 

TOPSIS 
Score 

Rank 

AMOGA-EFF B 0,25 0,25 0,25 0,25 0,782 1 

AMOGA-EFF C 0,20 0,20 0,35 0,25 0,756 2 

NSGA-II Best 0,25 0,25 0,25 0,25 0,621 3 

HOMER Optimal 0,25 0,25 0,25 0,25 0,598 4 

5. DISCUSSION 

Our results deliver a clear message: designing hybrid systems based on "average" weather is a recipe for failure. This finding 
empirically reinforces the limitations of deterministic approaches noted by Sawle et al. (2018) and Eriksson & Gray (2019). The 
profound inter-annual variability we quantified confirms that systems must be built to withstand extremes, not averages, a point 
that extends the work of Zhang et al. (2019) by incorporating a much deeper stochastic analysis. 
Furthermore, by integrating CMIP6 projections, this study addresses a critical gap, moving beyond the simpler climate integrations 
used in past research. The projected decrease in solar irradiance, coupled with rising temperatures that degrade battery life, explains 
why our algorithm favors resilient configurations. This forward-looking approach is made viable by AMOGA-EFF's computational 
efficiency, which overcomes the prohibitive runtimes of earlier stochastic methods noted by Maleki & Askarzadeh (2014). 
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Ultimately, the economic analysis, supported by new metrics like CRI and EVF, provides actionable insights for risk management. 
The conclusion that a higher upfront investment leads to a lower life-cycle cost proves that in an uncertain climate, the most resilient 
design is also the most financially sound. 

6. CONCLUSION 

The implementation of our Adaptive Multi-Objective Genetic Algorithm with an Evolving Fitness Function represents a significant 
improvement over current design practices for hybrid systems. The results obtained validate this robust simulation-based approach 
and open the way for broader applications, including the integration of multiple renewable energy sources. This work provides a 
solid methodological foundation for designing the resilient and cost-effective energy systems required to meet the challenges of an 
uncertain climate future. 
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