

Technological Disruptions In The Energy Industry: Trends In Renewable Energy Innovations

Okujagu Diepiriye Chenaboso¹, Ekeinde, Evelyn Bose²

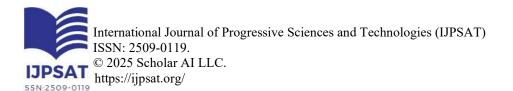
¹Department of Geology, University of Port Harcourt, Choba Port Harcourt

²Department of Petroleum and Gas Engineering, Federal University Otuoke,
Federal University Otuoke, Bayelsa State, Nigeria

ekeindeee@fuotuoke.edu.ng

Corresponding Author: Okujagu Diepiriye Chenaboso. E-mail: diepiriye.okujagu@uniport.edu.ng

Abstract: A major shift in global energy is happening because of rapid advancements in renewable energy technology. The report examines the effects of these developments, highlighting the great increase in solar and wind energy along with the key involvement of energy storage and smart grids that made renewable energy more possible. Although major investments and helpful policies speed up the growth of renewables, important difficulties remain, like restrictions on power grids and problems in the supply chain. It is made clear in the analysis that the key to bringing about a green energy world is good management, proper storage, and resilient delivery, rather than just more electricity being generated. Because of this ongoing age of electricity, the grid infrastructure should be stable and support advanced ways of storing energy for reliable and flexible power. In addition, how political policies stay stable influences how fast and successfully renewable energy technologies get implemented. Quick and sudden changes in policies can damage investor confidence and put project success at risk, proving why consistent and steady rules are needed to encourage and protect development. In short, it is important to keep innovating, invest wisely, and make coherent policies to face the challenges of this change, fight climate change, raise energy security, and support fair growth worldwide.


Keywords: Renewable Energy, Technological Innovation, Energy Storage, Smart Grids, Grid Integration

Introduction: The Accelerating Pace of Energy Disruption

There is a significant turning point in the global energy industry as the world switches quickly from depending on fossil fuels to using renewable energy. Rather than being a slow change, this means major innovation in energy, using new methods to replace systems based on old carbon-heavy technology (Holechek et al., 2022). It means introducing new ideas in all areas of energy, including its creation, management, industry processes, and patterns of use.

It is clear from scientific research that to prevent the worst effects of climate change, emissions worldwide must be brought down by almost half by 2030 and balanced with 'net-zero' by 2050 (IPCC, 2021). To achieve this aim, we should rely on sources such as wind or solar, because they do not create carbon emissions during the creation of electricity, unlike fossil fuels (Qi et al., 2024). Besides helping the environment, quickly adopting renewable sources provides a significant advantage in national energy security, because it protects countries from overseas conflicts and sudden swings in fossil fuel costs (IEA, 2022). Using several domestic energy sources helps make the economy stronger and more stable.

Besides, the adoption of wind and solar power is important because it tackles air pollution illnesses due to fossil fuels which annually lead to millions of deaths and heavy costs for health and society (Victoria et al., 2021). Using renewable energy has moved from

being just an environmental requirement to now benefiting national safety, health, and the need for more use. Now, because there are more benefits to the energy transition, people from various groups are attracted to the idea.

This report aims to meticulously analyze the key technological innovations currently transforming various renewable energy sectors. It will critically assess their profound impact on grid integration, overall stability, and the broader energy infrastructure required for a decarbonized future. The analysis will identify and evaluate the economic and policy drivers that are accelerating renewable energy deployment, alongside the persistent barriers that must be overcome. Finally, the report will provide a forward-looking perspective on the future role of renewables and offer actionable strategic considerations for governments, industry, investors, and research institutions.

Global Renewable Energy Landscape: Growth and Dominance

The global renewable energy sector is experiencing unprecedented growth, fundamentally reshaping the world's energy mix (see Table 1). In 2024, global renewable energy capacity saw a record annual increase of 15.1%, adding 585 gigawatts (GW) and bringing the total installed power capacity to 4,448 GW, according to the International Renewable Energy Agency (IRENA, 2024). The International Energy Agency (IEA, 2024) reported an even higher figure, with approximately 700 GW of new renewable installations in 2024, marking the 22nd consecutive year of record growth. These additions significantly contributed to the global energy supply, with renewable sources accounting for 38% of growth in international supply in 2024, surpassing natural gas (28%) and coal (15%) (IEA, 2024). As of 2024, nearly one-third of global electricity generation now originates from renewables (IRENA, 2024). Complementing this generation capacity, the global capacity for grid-scale battery storage surpassed 50 GW in 2023, with China leading installations at over 18 GW and the U.S. at 12.7 GW (Wang et al., 2025).

Solar and wind energy have been the primary drivers of this expansion, collectively accounting for an impressive 96.6% of all net renewable additions in 2024 (IEA, 2024). Solar energy, in particular, demonstrated exceptional growth, increasing by 32.2% to reach 1,865 GW in 2024. China led this expansion with 278 GW added, followed by India at 24.5 GW (IRENA, 2024). Investment in solar photovoltaic (PV) technology is projected to reach \$450 billion in 2025, making it the single largest item in the global energy investment portfolio (IEA, 2024). Wind energy capacity also grew significantly, by 11.1%, reaching 1,133 GW, primarily driven by expansion in the U.S. and China (IRENA, 2024). Hydropower remains the largest modern renewable source, reaching 1,283 GW in 2024, demonstrating a notable rebound from 2023, largely propelled by growth in China (Nefedova & Solovyev, 2023). Bioenergy expansion rebounded in 2024 with a growth of 4.6 GW, driven by China and France (Cao et al., 2024). Geothermal energy also saw an increase of 0.4 GW, led by New Zealand, Indonesia, Turkiye, and the U.S. (Barakat et al., 2024). Overall, renewables constituted 46% of global installed power capacity in 2024 (IRENA, 2024).

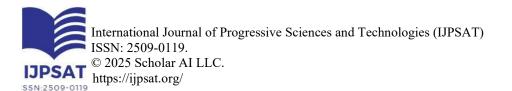
The overwhelming dominance of solar and wind in recent capacity additions, while accelerating overall renewable growth, simultaneously intensifies the intermittency challenge for grid operators. Solar and wind are inherently variable resources, dependent on weather patterns, which contrasts with the more stable and dispatchable nature of hydropower (Jiang et al., 2025). This disproportionate growth of variable renewables means that simply adding more capacity is insufficient; the primary focus must now shift to how this variable power is effectively integrated into the grid. This directly amplifies the need for sophisticated grid flexibility and adaptation mechanisms, advanced energy storage solutions, and smart grid technologies to maintain grid stability and reliability (Yang et al., 2022). The composition of renewable growth is thus as critical as the rate of growth in shaping future challenges and strategic priorities for the energy sector.

Despite this record growth, IRENA highlights that the current pace is still falling short of the ambitious global goal to triple installed renewable energy capacity by 2030, which requires 11.2 terawatts (TW) of total capacity (IRENA, 2024). To align with the 1.5-degree Celsius global warming limit, annual additions must exceed 1,120 GW each year for the remainder of the decade, necessitating a 16.6% annual expansion (IEA, 2024). Nevertheless, significant milestones are anticipated: renewables-based electricity generation is projected to surpass coal-fired generation in 2025 (IEA, 2024). Wind and solar power generation are expected to individually surpass nuclear power generation in 2026 (IEA, 2024). By 2029, solar PV electricity generation is set to become the largest renewable power source globally, surpassing hydropower, with wind-based generation following suit in 2030 (IEA, 2024). By 2030, renewables are projected to supply half of the global electricity demand (Holechek et al., 2022). In the U.S.,

Vol. 51 No. 1 June 2025, pp. 254-275

projections suggest renewable energy generation could reach 25% of total energy as early as 2030, largely driven by solar development, with experts believing the U.S. could achieve 80% renewable energy by 2050 (Deetman et al., 2021).

Regionally, China continues to be a dominant force, cementing its position as the world's largest single investor in energy, contributing nearly one-third of global clean energy investments across a diverse portfolio including batteries, electric vehicles (EVs), hydropower, nuclear, solar, and wind (IEA, 2024). Off-grid electricity capacity expansion, particularly in the Global South (excluding Eurasia, Europe, and North America), nearly tripled in 2024, growing by 1.7 GW to 14.3 GW, underscoring the increasing renewable ambitions and potential in these regions (IRENA, 2024). However, a significant disparity in clean energy investment persists, particularly in developing economies like those in Africa. Despite being home to 20% of the world's population and facing rapidly growing energy demand, Africa accounts for only 2% of global clean energy investment, with total investment across the continent declining by a third over the last decade (Mulugetta et al., 2022). This undercapitalization poses a substantial risk to achieving equitable global decarbonization and could exacerbate existing energy inequalities, potentially undermining collective climate goals. If these regions, which are often highly vulnerable to climate impacts and have significant unmet energy needs, cannot mobilize sufficient capital for clean energy infrastructure, they will likely continue to rely on fossil fuels, hindering sustainable development and global emissions reduction efforts.


Table 1: Global Renewable Energy Capacity Additions and Projections (2024-2050)

Category	Metric	2024 (Actual/Estimate)	2030 (Projection)	2050 (Projection)	Key Mileston (Timeline)	es
Global Total Capacity	GW	4,448 GW (IRENA), ~700 GW added (IEA) ⁵	11.2 TW needed for COP28 goal ⁵	-	Renewables Coal (2025) 10	>
Solar PV Capacity	GW	1,865 GW ⁵ , ~80% of IEA's 700 GW additions ⁵	~5,400 GW ¹² , 60% of new electricity capacity added worldwide ¹¹	~18,000 GW	Solar PV Hydropower (2029) 10	>
Wind Capacity	GW	1,133 GW ⁵	~3,000 GW ¹²	~8,000 GW ¹²	Wind Hydropower (2030) 10	>
Hydropower Capacity	GW	1,283 GW ⁵	~1,500 GW ¹²	~2,500 GW ¹²	Wind/Solar Nuclear (2026) 10	>
Bioenergy Capacity	GW	4.6 GW added in 2024 ⁵	-	-	-	
Geothermal Capacity	GW	0.4 GW added in 2024 ⁵	-	-	-	

Note: GW = Gigawatts, TW = Terawatts (1 TW = 1000 GW). Projections are based on various scenarios and may vary.

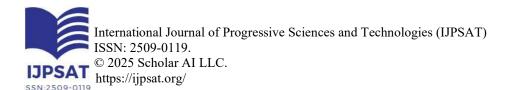
Figure 1: A combined solar and wind energy farm in China, symbolizing the global pivot towards diversified renewable power generation. (After Davidson, 2020).

Pioneering Innovations Across Renewable Energy Technologies

Significant technological breakthroughs are continually transforming the efficiency, cost-effectiveness, and deployment potential of major renewable energy sources. A pervasive trend across these diverse renewable technologies is the move towards modularity, adaptability, and multi-functional designs. This evolution is driven by the imperative for greater efficiency, a reduced environmental footprint, and seamless integration into dynamic energy grids. This systemic shift from large, centralized, single-purpose power plants to more distributed, flexible, and environmentally conscious solutions is inherently better suited for integration into a complex, variable, and increasingly decentralized grid (see Table 2).

Solar Energy

Advancements in solar energy technology are rapidly enhancing its viability as a sustainable power source. A key area of innovation lies in photovoltaic materials, with perovskite solar cells emerging as a highly promising new technology, distinguished by their low production costs and high efficiency (Machín & Márquez, 2024). These semiconductor materials possess a unique crystal structure that enables them to absorb a wide spectrum of sunlight, including both visible and near-infrared wavelengths, converting it into electricity with exceptional effectiveness. Unlike traditional silicon, perovskite cells can be fabricated using inexpensive materials and solution-based coating methods, paving the way for high-volume, low-cost production. Researchers are actively working on improving the uniformity and performance consistency of these cells to enable widespread commercial scaling. A notable development in this regard was Japan's ¥227 billion (\$1.5 billion USD) national investment in 2025 to commercialize ultrathin, flexible perovskite solar cells (Hu et al., 2023).


Further enhancing efficiency, perovskite-silicon tandem solar cells represent an innovative hybrid design. This configuration layers a perovskite cell on top of a conventional silicon cell, allowing each material to absorb different parts of the solar spectrum. This synergistic approach significantly boosts the overall energy conversion efficiency beyond what either material can achieve alone (Yang et al., 2025). These material science breakthroughs contribute to reducing system size, cost per watt, and installation space, particularly beneficial for high-demand or space-limited applications (Shi et al., 2024).

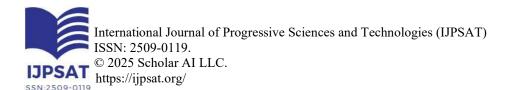
Efficiency breakthroughs continue to push performance boundaries. In early 2025, Trina Solar set a new world record for solar conversion efficiency in n-type fully passivated heterojunction (HJT) solar modules, reaching 25.44% (Truong Le & Van Dieu, 2025). Broader trends demonstrate a consistent improvement in module efficiency, from 14% to 22.5% between 2010 and 2024, driven by transitions to advanced cell types like PERC and n-type cells (TOPCon, SHJ, x-BC) (Palz, 2023).

Another significant innovation is bifacial solar panel technology, which captures sunlight from both the front and back surfaces of the module (Badran & Dhimish, 2024). This design allows for the utilization of reflected light from various surfaces, such as the ground, water, or snow, resulting in increased electricity yield. Bifacial panels perform exceptionally well in environments with highly reflective surfaces, and their global market is experiencing remarkable growth due to enhanced efficiency and reduced costs. Beyond utility-scale applications, solar technology is increasingly integrated into consumer electronics, exemplified by Lenovo's 2025 unveiling of the Yoga Solar PC, a concept laptop with 84 ultra-efficient solar cells achieving over 24% conversion efficiency (Said & Ahmad, 2025). The National Renewable Energy Laboratory (NREL) actively conducts manufacturing cost analyses for various PV technologies to identify cost drivers and potential pathways for further cost reduction, ensuring continued economic viability (Gupta et al., 2024).

Wind Energy

Wind energy is becoming much more useful and lucrative because of recent innovations. There has been a major increase in size for wind turbines, with tower (hub) height climbing from 30 meters to 90 meters and rotor diameter rising from 30 to 125 meters from the 1990s up to 2020. Because of this, the power capacity has risen from 0.2 MW to 3 MW (Veers et al., 2023). With the help of some innovations that are still improving, 169-meter-tall turbines are now being produced when a 160-meter tower has a 150-meter rotor (Wu & Zhong, 2025). Recently, NREL estimated that better wind power technologies could access an extra 80% of wind energy that can be sold profitably inside the contiguous USA by 2025.

Key innovations contributing to enhanced efficiency and cost reduction include:


- Longer Blades: They increase the amount of energy obtained from turbines. Segmenting turbine blades assists in lowering transportation costs and installation of turbines.
- Taller Towers: Let turbines access faster and steadier winds at higher heights, where current standard turbines cannot reach.
 Average height increment of 17 meters offers the clearance that is required to allow longer blades to tap into these high-altitude winds.
- Low-Specific-Power Wind Turbines: These turbines are characterized with a bigger rotor as compared to the size of their
 generator. The design allows them to harness more wind and impart more energy to the generator and the overall availability
 of wind power is augmented.
- Advanced Tower Manufacturing: Innovative processes Spiral welding and 3D printing allow the wind turbine tower to be
 created on-site. This cuts down on transport expenses and it avoids logistical limitations that come with transporting huge
 components.
- Climbing Cranes: With higher turbine heights, special climbing cranes permit more effective installation, as well as significant component changes (e.g., gearboxes, generators, blades). Compared to the conventional cranes, these cranes will provide cost benefits in terms of cheaper rental costs, assembly costs, and moving costs.
- Wake Steering: This operational optimization technique uses controls to tilt or turn the direction a wind turbine faces and adjust generator speed. By redirecting individual turbines, plant operators can minimize the aerodynamic impact on downstream turbines, leading to annual energy production gains of 1%-2% at existing facilities.

The distributed wind energy industry is also undergoing rapid innovation to reduce costs and enhance customer confidence for small- and medium-sized wind turbines (less than 1 MW capacity). This includes optimizing designs, developing advanced manufacturing processes, and performing rigorous turbine and component testing and certification (Clifton et al., 2023). In offshore wind, the development of floating turbines is a significant innovation, allowing wind farms to be positioned in deeper ocean waters (up to 200 meters deep), thereby unlocking vast wind resources in previously inaccessible, windier locations (Hassan et al., 2024).

Hydropower

Hydropower, a leading renewable energy technology, is undergoing continuous innovation to enhance its operational efficiency, reduce costs, and expand its deployment potential. Advancements in turbine design, materials, run-of-river systems, and construction techniques have made hydropower increasingly competitive with other energy forms (Quaranta & Davies, 2022). Developing free-flow hydroelectric turbines that are both efficient and less damaging to the environment is a significant advancement. Because these turbines can work with mild river currents, it is not necessary to build huge dams. As a result, the impact on nature is reduced and power can be spread out. New designs of free-flow turbines lower mortality in fish and keep aquatic organisms safe while upholding biodiversity and the routes essential for species not to vanish (Chen et al., 2024). Successful initiatives of this kind have put energy into local communities in Norway and Nepal, without seriously disrupting their river environments. Nearly all (95%) of the new chosen hydropower sites in the U.S. come from making changes to existing dams that have never generated power (Schmitt & Rosa, 2024). This strategy relies on structures that are already there, lowers the cost of construction, is easy on the environment, and is projected to play a key role in hydropower.

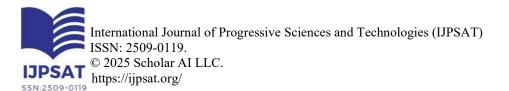
Using artificial intelligence is helping run hydroelectric plants in better ways, leading to higher efficiency and greater sustainability. Through its features, AI allows hydropower plants to manage their water usage wisely and efficiently, resulting in better production of energy. Intelligent systems are mainly used in energy for forecasting power demand and improving how plants work, using upto-date data about the weather, past use, and market tendencies to get long-range predictions with much accuracy (Jeroen et al., 2024). China, a major hydropower producer, has begun integrating AI systems to optimize production and maintenance in its largest plants, reducing operating costs.

The trend of hybrid power systems, particularly the integration of hydropower with battery storage, is gaining traction, with at least 11 U.S. hydropower plants having either added or planning to add battery storage capacity (Hu et al., 2024). These hybrid systems enhance overall energy system efficiency, reduce dependence on fossil fuels, and contribute to greenhouse gas emission reductions. They also offer operational flexibility, adapting to changes in energy demand and resource availability. Furthermore, new dam and turbine designs are focused on being less invasive and more environmentally friendly, with significant improvements in fish passage systems and advanced water management techniques that optimize water storage and release to minimize impacts on river and terrestrial ecosystems, ensuring necessary ecological flows (Alvarez-Alvarado et al., 2024).

Geothermal Energy

Recent developments in technology are set to uncover the huge potential in geothermal energy, which is a natural and trustworthy energy source. EGS is a brand-new technology that already shows a lot of promise to be a major clean energy source. With EGS, people build underground reservoirs by pumping liquid into heated rocks that are normally not able to spread geothermal energy above ground. Geothermal energy can be used in greater amounts because this technology reaches resources that conventional drilling cannot, allowing people to have clean and steady power (Augustine et al., 2023). According to DOE, it hopes to reduce EGS costs by 90% to \$45 per megawatt-hour by the year 2035 through its "Enhanced Geothermal Shot" program. Working in the field laboratory at FORGE, scientists are actively accelerating EGS development (Kelly et al., 2023).

Using the natural storage capabilities of new geothermal systems helps plants to run flexibly, much as regular batteries do. The impermeable rock required for EGS acts as a self-contained underground reservoir for heated fluid, functioning as a giant energy storage system. Operators can "charge" the system by injecting more fluid than they extract, building up pressure and filling the reservoir with heated fluid. When clean energy is most needed, this heated, pressurized fluid can be discharged to the surface to generate electricity. This flexibility dramatically increases geothermal's value, allowing it to complement intermittent sources like wind and solar by avoiding generation when electricity prices are low (Norbeck et al., 2024). Field testing by Fervo Energy at its Project Red plant in Nevada has demonstrated energy storage capabilities exceeding five days, with scenarios suggesting over 10 days of storage (Lipton, 2024).


Advanced Geothermal Systems (AGS) constitute a separate category of closed-loop geothermal wells that recirculate fluid without injecting water into the ground. For instance, Altarock Energy's AGS technology could potentially produce 40–50 MWe of energy per well, significantly more than conventional geothermal (7 MWe) or typical EGS wells (less than 5 MWe) (Boretti, 2022). Significant progress has also been made in cost reduction for geothermal projects. Drilling speeds at DOE's FORGE site have improved by over 500% in just three years, substantially cutting well-development costs. Future projects could see operating costs lowered by 17–30% by 2030 (Kelly et al., 2023). Policy support, such as the "Enhanced Geothermal Shot" and legislative efforts like the HEATS Act (streamlining drilling permits) and the Supercritical Geothermal Research and Development Act (advancing research into high-temperature systems), further aims to unlock geothermal potential (Kabeyi & Olanrewaju, 2022).

Biomass and Ocean Energy

Innovative approaches are also transforming the biomass and ocean energy sectors, expanding their roles in the renewable energy mix.

Biomass Energy Innovations:

- Advanced Biomass Gasification: This is a technique which turns organic material into syngas, a clean and multipurpose
 fuel. Recent advances have made it more efficient and less emitting and therefore more realistic to use on large scale energy
 production.
- Combined Heat and Power (CHP) Systems: CHP systems generate electricity and useful heat simultaneously, using biomass, and, thereby, overall energy efficiency is greatly improved. Research and development in CHP technology is aimed at enhancing the compatibility of biomass boilers with turbines and generators to achieve greater energy production and lesser cost of operation in addition to cutting down the emission of greenhouse gases.

- Bioenergy with Carbon Capture and Storage (BECCS): BECCS stands for Bioenergy with Carbon Capture and Storage, which gathers carbon dioxide produced during biomass energy and stores it in the ground, so the process becomes carbonnegative. Improved ways of capturing and storing carbon are helping BECCS become more effective against climate change.
- Pyrolysis for Bio-oil Production: Bio-oil is formed when biomass is heated in a reaction without oxygen in pyrolysis. New
 improvements in this field are increasing both the quality and output of bio-oil used either as fuel or for producing chemicals.
 Working on how to make reactor systems more advanced and using catalysts is very important for the economic success of
 bio-oil production.
- Algae-Based Biomass: Algae are good sources of biomass since they grow quickly and have a lot of energy. Recent
 technological steps in farming and gathering algae biomass are allowing more energy production using it. Some innovations
 being using algae production are closed-loop systems, genetic editing for larger lipid levels, and inexpensive ways to harvest
 the algae.
- Waste-to-Energy Technologies: There is increasing interest in making energy out of both agricultural and municipal wastes.
 Technologies like anaerobic digestion and thermal depolymerization are being improved so they can treat several kinds of waste and make biogas, electricity, and biofuels. Because of these innovations, less waste production can happen and renewable energy is created.

Ocean Energy Innovations:

- Wave Energy: This involves using the kinetic energy of the ocean waves and turning it into usable electricity (Clemente et al., 2023). Wave energy has great predictability and consistency, which makes it an exciting and naturally tied idea to solve the Blue Economy (Ringwood et al., 2023). Innovations comprise software-optimized hull forms, e.g., Mocean Energy, which can generate more power, and they are survivable and reliable (Simbolon et al., 2024). CorPower Ocean and OPS Solutions have also worked out new cheaper composite designs of important parts of the wave energy converter, which are lighter and more energy efficient, in order to reduce the cost of energy (Gallutia et al., 2022). Wave power has also the potential to be deployed as part of multi-energy systems that co-optimise solar and energy storage to overcome the problem of intermittency since wave and solar tend to be complementary over time scales (Gu & Li, 2022).
- **Tidal Energy:** Tidal energy involves the use of kinetic energy of tides in oceans and turning it into electricity. The main strength it has is that it is predictable and consistent and becomes a solid alternative to conventional energy sources (Neill et al., 2021). The viability and scalability of this technology have already been proved by the successful projects, including the MeyGen project in Scotland or the Sihwa Lake Tidal Power Station in South Korea (Thennakoon et al., 2023).
- Ocean Thermal Energy Conversion (OTEC): OTEC (Ocean Thermal Energy Conversion) is a technology that harnesses
 the power by using the difference in temperature between the warm surface water and cold deep water (Plocek & Varley,
 2025). The process utilizes the thermodynamic cycle to power turbines and this provides a steady and constant source of
 energy especially in tropical coastal areas where there is a high ocean thermal gradient (Mao et al., 2023).
- Emerging Applications: Ocean energy is finding new applications within the "Blue Economy," including powering electrified port infrastructure, providing natural cooling and improved reliability for subsea data centers, and supporting direct ocean CO₂ capture processes—technologies that are more efficient than direct air capture but require robust renewable energy solutions (Pace et al., 2023). These emerging uses highlight the growing synergy between marine-based energy systems and sustainable economic development in coastal and offshore environments (Khan & Emon, 2024).
- Cost Reduction: Ocean energy technologies need to lower the Levelized Cost of Energy (LCOE) if they want to become more competitive (Foteinis, 2022). First, these technologies can be applied to areas where energy is already important, including offshore oil and gas and aquaculture, so the projects are still reasonable to fund and support (Guo et al., 2023).

The combination of new material science progress such as the use of perovskites in solar and advanced composites in wind with new advanced manufacturing methods like 3D printing and on-site fabrication is turning the renewable energy sector into something

entirely different (Ahmed & Mohammed, 2024). Thanks to this synergy, expenses are dropping, the performance of these technologies is increasing, and their scalability is rising. As an illustration, using affordable techniques to print perovskite cells makes it possible to make large numbers at a low cost (Zhou et al., 2024), and the invention of on-site spiral welding for wind turbine towers reduces difficulties with logistics and building many devices at once (Wang et al., 2022). When new materials and more effective manufacturing mix, it lets us build more efficient, enduring, and dependable methods to manufacture and use renewable energy than ever before.

Table 2: Key Technological Innovations and Their Impact on Efficiency and Cost Reduction by Renewable Source

Renewable Source	Key Innovations	Impact on Efficiency	Impact on Cost Reduction
Solar Energy	Perovskite & Tandem cells, Bifacial panels, Advanced cell types (HJT, n-type)	Increased conversion rates (e.g., 25.44% HJT), higher energy capture (bifacial), enhanced light absorption	Lower production costs (perovskite), reduced system size/cost per watt, reduced installation space
Wind Energy	Taller towers, longer blades (segmented), Low-specific-power turbines, On-site manufacturing, Wake steering, Climbing cranes	Increased energy capture per turbine, access to stronger winds, optimized energy production (1-2% gains from wake steering)	Lower installation costs (segmented blades, climbing cranes), reduced transportation costs (on-site manufacturing), overall reduced LCOE
Hydropower	Free-flow turbines, non- powered dam retrofits, AI integration, Advanced materials, Hybrid systems (with storage)	Improved operational efficiency, optimized water resource use, enhanced energy demand prediction, increased overall system efficiency	Reduced construction costs (retrofits), decreased maintenance costs, improved competitiveness with other energy forms
Geothermal Energy	Enhanced Geothermal Systems (EGS), Flexible geothermal power ("built-in battery"), Advanced Geothermal Systems (AGS)	Unlocks vast previously inaccessible resources, provides dispatchable power, acts as energy storage (5-10+days storage)	90% cost reduction target by 2035 for EGS, 500% improvement in drilling speeds, 17-30% lower operating costs by 2030
Biomass Energy	Advanced gasification, Combined Heat and Power (CHP), Bioenergy with Carbon Capture and Storage (BECCS), Pyrolysis, Algae- based biomass, Waste-to- Energy	Higher energy output, enhanced overall energy efficiency, carbon-negative processes (BECCS), improved yield of bio-oil	Lower operational costs (CHP), improved economic viability of bio-oil production, waste reduction benefits
Ocean Energy	Advanced Wave Energy Converters (WECs), Tidal turbines, OTEC, Multi-use platforms	High predictability (tidal), consistent energy source (wave), increased energy efficiency (lighter WECs), enhanced resource utilization	Significant reduction in cost and mass of WEC technology, reduced LCOE, economic viability in high-cost industries

Enabling Technologies for Grid Integration and Stability

With a fast increase in solar and wind energy, simple enabling technologies are not enough to hold the grid steady and ensure the power supply remains reliable. The grid built for fossil fuels is having difficulties handling the differing and decentralized supply of renewable energy. Handling the above challenges requires energy storage, modernized grids, and advanced systems with AI applications.

Energy Storage Solutions

Renewable energy systems are transformed when energy storage takes care of the intermittent nature of solar and wind power. Such technologies store electricity in various manners and make it available whenever it is required, which helps people use energy differently from when it was produced (Cosgrove et al., 2023). Without this ability, it would be difficult to keep the electricity

balance or meet demand, especially when there is not enough sun or wind (Sánchez et al., 2022).

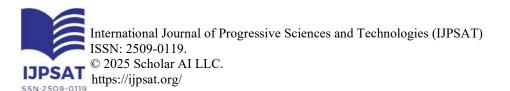
In 2023, grid storage for batteries reached more than 50 GW for the first time, indicating a major advance in renewable energy (Wang et al., 2023). Lithium-ion batteries rule this sector with 90% of all grid-scale storage coming from them because they are efficient and very economical. Grid-scale battery storage costs dropped to \$151/kWh in 2023, which is over 80% less than the 2010 figure, so it is now more financially attractive. Because of the declining cost of storage, more companies can enter the storage market and integrate more renewable energies, which gives them chances to earn extra by responding to changes in demand and selling additional energy.

Beyond lithium-ion, other types of energy storage are crucial. Pumped hydropower storage (PHS) remains the most common large-scale grid storage technology, capable of storing energy for days or weeks (Blakers et al., 2021). Other mechanical

storage solutions include compressed air energy storage (CAES) and liquid air energy storage (LAES), offering large capacity and fast discharge capabilities. Thermal energy storage (TES) systems, divided into sensible, latent, and thermochemical

types, store electrical energy as thermal energy in inexpensive materials, providing tens to hundreds of hours of electricity or heat. TES systems offer improved safety, high energy density for certain materials, and low costs due to inexpensive raw materials, making them a promising solution for long-duration energy storage (LDES) (Tao et al., 2022). Emerging alternatives like sodiumion and solid-state batteries are also being explored to diversify storage options and address supply chain concerns related to lithium (Hoffstaedt et al., 2022) (see Figure 2). These advancements in energy storage are making the grid more resilient, providing backup power during disruptions, and enabling a higher penetration of variable renewables.

Figure 2: A large-scale battery energy storage facility, essential for stabilizing grids by storing surplus renewable energy (After Harter, 2025).


Smart Grid Technologies

Smart grids are modern electricity networks that utilize digital technology to monitor and manage the flow of electricity in real time, enabling two-way communication between utility providers and consumers (Joshi et al., 2024). In comparison to traditional grids, it is more efficient, dependable, and versatile, all crucial aspects for letting renewable energy sources take part in the grid (Huang et al., 2021).

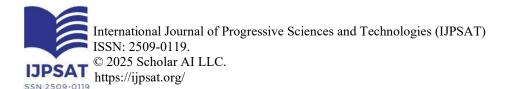
Important smart grid solutions that improve the use of renewable energy are:

Advanced Monitoring and Control Systems: Smart sensors and meters collect detailed and up-to-date statistics that show how much energy is being created and used (Rind et al., 2023). Sophisticated algorithms are used to analyze the data and find possible issues—such as power going out or equipment failing—so that these issues can be dealt with before they get worse (Chen et al., 2023). With this capability, electricity grids can balance their supply with demand, even as the amount of renewable energy increases (Ojadi et al., 2023).

• Demand Response Initiatives: With the aid of smart grids, demand response programs are used to encourage people to

reduce their energy use when peak demand arises. By doing this, grid stress is lowered, more renewable energy is made use of, and good energy distribution becomes more secure (Gharbi et al., 2023). Using smart meters and systems, utility companies can adapt demand as situations change, so industrial and residential users can move their energy use when solar or wind power is high (Tiwari & Pindoriya, 2022).

- **Decentralized Energy Management:** Dubey & Paudyal (2023) affirm that smart grids play a major role in uniting distributed energy resources (DERs), including rooftop solar panels and local wind turbines. By themselves or in combination with the main grid, microgrids assure that power supplies are both flexible and reliable within a given area (Strezoski & Stefani, 2024). Having a grid based on small, local renewable plants improves its endurance and cuts down the need for big central facilities, offering a more flexible power system.
- Improved Transmission Networks: It is important for advanced networks to move renewable energy from productive areas to areas with a higher demand, thus balancing the supply in a broad area (Gallegos et al., 2024). Smart systems process data from several energy sources and types of storage to keep the grid stable as renewable power levels change rapidly (Jayachandran et al., 2022).


With these new solutions, grid operators can deal with changes from variable renewables, making the power supply more dependable. With these devices, the grid can adjust to changes in generation and keep the frequency, which is becoming harder with standard generators (Shahzad & Jasińska, 2024). The use of advanced systems and monitoring devices has enabled people to handle rapid changes in the system, making the entire operation more reliable (Álvarez-Arroyo et al., 2024).

Digitalization and AI Applications

The sector is receiving many opportunities to improve efficiency by adopting tools such as AI and digital methods (Pandey et al., 2023). AI's powerful abilities in machine learning and data analysis are especially game-changing for these industries by making it possible to maintain equipment ahead of potential failures, forecast energy demand, and control different energy systems accurately (Hamdan et al., 2024).

For renewable energy, there are several applications of AI that work in the energy sector.

- Optimizing Energy Consumption and Load Forecasting: Large amounts of data about weather, consumption in the past, energy markets, and social activities are analyzed by AI to forecast coming energy use with precise results (Wang et al., 2024). This makes it possible for utility companies to handle more power at peak times, reduce waste, and cut down on emissions (Di Stefano et al., 2023). Being aware of such patterns, utilities are able to operate battery storage systems at the most beneficial times according to changing market conditions (Hamdan et al., 2024).
- Improving Grid Resilience and Stability: With the help of AI, grids are stabilized and there is less waste when integrating renewable energy sources (Rasheed & Tambe, 2024). With artificial intelligence, predictive maintenance is possible, so that possible issues in energy parts can be spotted before causing costly problems. It is estimated that implementing AI and smart grid technologies in energy could give the world's economies up to \$1.3 trillion in value by 2030 (Al-Thani et al., 2024).
- Optimizing Energy Trading and Management of Renewable Energy Credits (RECs): AI has the ability to improve the
 way and amount of RECs and carbon offsets that are purchased and managed. Using machine learning, companies gather
 information needed to make the best choices when purchasing RECs (Han & Yang, 2024). AI is also able to check the quality
 of RECs by considering information on the source of renewable energy and the dependability of the company, so that all
 credits can be validated (Hamdan et al., 2024).
- Operational Efficiency and Productivity: With AI, energy producers are able to cut down their internal costs up to 15% and increase their productivity by 10% (Ukoba et al., 2024). Last year, ADNOC applied AI, which helped them save \$500 million and cut down carbon emissions by around a million tonnes (Stecyk & Miciuła, 2023).
- Customer Engagement and Demand Optimization: With the use of AI, smart devices share important data to assist users

in conserving energy and minimize expenses. If customers understand these tools, they can choose to use appliances at certain times and earn extra income by giving back extra energy to the system, which reduces the need for power and supports clean energy (Malleeshwaran & Prasanna, 2024).

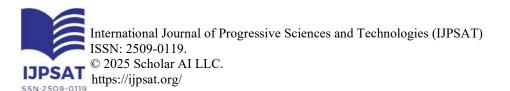
Even though AI has much to offer, its use in the energy sector meets challenges, such as defining the key advantages, providing the sources needed by smaller companies, and dealing with the change it brings to people (Olsson and Vadeghani, 2024). Instead, the aim is to team up AI with humans so that processes become more efficient and have a bigger impact, which is vital for the energy transition (Park & Kim, 2024).

Drivers and Barriers to Accelerated Deployment

A lot of economic, policy, and infrastructure issues must be managed to speed up the uptake of renewable energy. Realizing what encourages or stops the energy transition is essential for creating a good plan and using money wisely.

Economic Drivers

One of the major factors that have led to a massive adoption of renewable energy is its economic feasibility. Solar power electricity generation costs decreased by 85 percent between 2010 and 2020, onshore and offshore wind energy generation costs declined by 56 percent and 48 percent, respectively (IEA, 2021). Such a plunge in prices has caused renewable energy to become the cheapest power source in most regions of the world today, and hence it is getting more and more appealing even to low- and middle-income countries where the majority of the future energy demand is expected to be concentrated (Timilsina, 2021).


In 2025 global energy investment is expected to rise to a new all-time high of \$3.3 trillion, with clean energy technologies more than doubling the amount of fossil fuels (IEA, 2024). CleanTech investing (in renewables, nuclear, grids, storage, low-emissions fuels, efficiency, and electrification) is set to reach a new record of \$2.2 trillion in 2025. It is topped by solar PV, which is set to grow to \$450 billion in 2025 and become the single biggest item in the worldwide energy investment kit (IEA, 2024). Investments in battery storage are also increasing at a tremendous rate, jumping to over \$65 billion in 2025 (Gur, 2024). This transition means that the era of electricity is here to stay as electricity generation, grid, and storage will enjoy investment that will be approximately 50% more than the combined total spent on getting oil, natural gas, and coal to market (IEA, 2024).

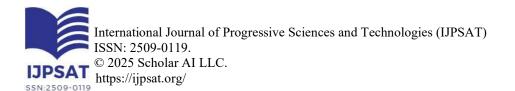
Even technological innovation in itself is a great economic driver. The analysis shows that renewable energy consumption is substantially and positively affected by technological advancements, which increase the rate of their widespread use, make them more competitive among energy suppliers, and bring down the cost of energy to the end consumer (Khan et al., 2021). Another trade strategy based on exports also has a positive effect on the renewable energy utilization as nations emphasize the product quality to boost their exports (Su & Fan, 2022). This is an economic dynamic that leads to virtuous cycle of innovation leading to a reduction in cost which further leads to increased investment and adoption.

Policy and Regulatory Drivers

Supportive policy regulations and governments are also playing an essential role in increasing the pace of renewable energy technology uptake and investment attraction (Rao et al., 2024). The latter may be roughly divided into financial incentives, marketenabling tools, and long-term planning tools, with all of them being instrumental in determining the course of national and regional energy transitions (Oduro et al., 2024).

- Financial Incentives: These policies vary the renewable energy more economically attractive. They can be subsidies, i.e., grants or tax credits, which lower the cost of systems, Feed-In Tariffs (FITs), which assure what is paid to renewable energy generators, or Net Metering, which enables consumers to sell surplus electricity back into the grid (Bertoldi et al., 2021). The Residential Clean Energy Credit is a tax credit available in the U.S. to homes with 30 percent of the cost of qualified clean energy property, such as solar, wind, geothermal, fuel cells, and battery storage (Knuth, 2023).
- **Regulatory Policies:** These policies assist in coming up with a favorable regulatory environment. Renewable Portfolio Standard (RPS) is a requirement that a particular percentage of electricity should be supplied by renewable energy sources by

a certain date, which basically generates demand in the market (Barbose, 2021). Such tools to price carbon, whether as carbon taxes or cap-and-trade schemes, raise the price of fossil fuels and indirectly advantage renewables by raising the relative cost competitiveness of clean energy (Meng & Yu, 2023). Also, the expedited permitting procedures can substantially speed up the approval of the projects, decreasing the time and expenses of the new renewable installation development (Chen et al., 2024).


• Supportive Infrastructure Policies: Such policies increase the infrastructure required by the renewable energy. It is also necessary to modernize the grid and invest in it so that the transmission capacity could handle the intermittency of renewable energy sources (Shahzad & Jasińska, 2024). Energy storage Policies that support the development and deployment of energy storage technologies are also crucial, as they allow to increase the integration of variable renewables by balancing demand and supply in real time (Cavus, 2025).

Countries like Germany and Denmark have significantly increased their share of renewable energy through robust policy support (Tutak & Brodny, 2022). The European Union's Green Deal aims for climate neutrality by 2050, boosting renewable energy adoption and efficiency (Grafström et al., 2023). In Asia, countries like India and China have set aggressive renewable energy targets and are heavily investing in solar and wind power (Xinyu et al., 2025). The U.S. Inflation Reduction Act (IRA) and China's 14th Five-Year Plan for Renewable Energy are providing further support for accelerated deployment (Wang et al., 2021). Such policies, by providing clear guidelines, incentives, and regulatory stability, attract both domestic and international investors (Bórawski et al., 2022).

Key Barriers

Despite the strong drivers, several significant barriers hinder the full-scale deployment of renewable energy technologies globally.

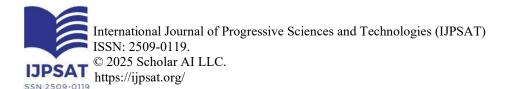
- Grid Infrastructure Limitations: A significant number of the current power grids are old, and they were not designed to manage modern energy requirements, which result in power cuts, waste, and expensive repairs (IEA, 2023). The energy sources that are renewable like solar and wind are not constant, and therefore, more advanced storage and management systems of the power grid are required to be ready to receive more energy supply and stability (IRENA, 2023). With over 3,000 GW of renewable energy projects queued up and over 1,500 GW of them being further in the pipeline, the world is witness to the fact that there exist enormous grid connection bottlenecks (IEA, 2024). Today, grid investment, at \$400 billion per year, is not staying abreast of generation and electrification investment a troubling decline that endangers long-term electricity security (IEA, 2024). Such an undertaking is also hindered by the long permitting processes and constricted supply chains of vital ingredients, including transformers and cables (Blaber, 2023).
- Supply Chain Challenges: It is complicated for renewables to be produced, as it involves collecting raw resources, organizing their delivery, developing projects, and integrating them into the grid (Wang et al., 2022). Sometimes, the delay in project delivery is caused by supply chain challenges connected to international events, limited resources, and geopolitical problems (Nunes et al., 2023). The absence of essential products like transformers or wind turbine pieces may delay a project for many months or even years (Mastrocinque et al., 2022). Because the industry depends on critical minerals, some of which are conflict minerals, it needs to follow responsible and ethical guidelines set by ESG regulations (Gawusu et al., 2022). Handling logistics for large components such as wind turbine blades is not easy, especially when there is a lack of decent infrastructure in underdeveloped areas (Onukwulu et al., 2023). Rising tariffs, unclear federal policies, and big economic pressures have influenced the decision to cancel many projects in the sector (Khan et al., 2022).
- Capital Costs and Market Entry: Decreased costs are the main benefit of renewable energy, yet the initial money for large-scale installation is still a major problem, especially for developing countries with financial limitations (Streimikiene et al., 2021). Financial institutions may perceive renewables as risky, leading to higher lending rates and reduced investment appetite (O'Shaughnessy et al., 2021). The well-established nature of existing fossil fuel industries—benefiting from entrenched infrastructure, expertise, and legacy policy frameworks—creates an unequal playing field for renewables (Asante et al., 2022). Many utilities still do not consider the full value of wind and solar, often focusing narrowly on upfront cost parameters and

missing long-term opportunities (Painuly & Wohlgemuth, 2021). Policy uncertainty can also deter investment, as clear and long-term signals are essential to provide investor confidence and ensure sustained financing (Susskind et al., 2022).

Future Outlook and Strategic Implications

The trend in renewable energy development suggests a sea change in the global energy situation that will not be reversed. The forecasts reveal that renewable electricity generation in the world is expected to reach more than 17,000 terawatt-hours (TWh) by the closing of this decade, which is nearly a 90 percent rise in comparison to 2023, sufficient to satisfy the power needs of China and the United States combined in 2030 (IEA, 2024). This means that the solar, wind and other renewable sources will meet 67 percent of global power demand by 2050, representing an increase of 33 percent in 2024 (IRENA, 2024). Solar energy is expected to stay as the quickest developing source, and the collective capacity will surpass 400 GW in the U.S. alone by 2050 (DOE/SETO, 2023). The capacity of wind power is expected to grow to roughly 3,000 GW by 2030 and 8,000 GW by 2050, whereas solar power capacity is supposed to increase to some 5,400 GW by 2030 and 18,000 GW by 2050 (IEA, 2024). It is expected that the hydropower capacity will increase to 1,500 GW by 2030 and 2,500 GW by 2050 (IRENA, 2024).

These projections underscore the long-term impacts of technological disruptions. The strategic deployment of novel technologies is destabilizing carbon-intensive incumbents and accelerating a transition toward environmentally sustainable systems (Sump & Yi, 2021). This disruption carries immense promise for rapid emissions reductions and the creation of new economic sectors. The "Age of Electricity" is not merely about increasing renewable generation capacity but fundamentally about the intelligent management, storage, and resilient delivery of electricity to consumers (Lenox & Duff, 2021). This implies a future where advanced materials, manufacturing scale-up, digital twins, AI, and advanced sensing become integral to optimizing energy systems (Tolonen, 2024). Flexible energy solutions, such as enhanced geothermal


systems with inherent storage capabilities, will play a crucial role in complementing intermittent renewables and stabilizing the grid (Dunford & Han, 2025).

However, this transition also presents challenges, including socio-economic dislocations and potential exacerbation of existing inequalities if not managed carefully. The significant disparity in clean energy investment—particularly the undercapitalization of developing economies like those in Africa—poses a substantial risk to achieving equitable global decarbonization and could deepen global inequalities, undermining collective climate goals (Mitra & Chandra, 2023).

Strategic Recommendations

To accelerate the transition to a sustainable and resilient energy future, the following strategic recommendations are critical:

- 1. **Prioritize Grid Modernization and Expansion:** Governments and utility companies are required to boost their investment in building and updating electricity systems for more and changing amounts of renewable energy (Hassan et al., 2024). Another way is to simplify how permits are given for transmission lines and to solve issues with supplying transformers, cables, and key smart inverters (Falchetta et al., 2022).
- 2. Foster Long-Term Policy Stability and Predictability: There should be solid rules and aims set by policy-makers that will last in the renewable energy and energy storage sectors. Enduring stability is necessary to reassure investors, reduce the risk of different projects, and maintain growth in the sector, preventing possible negative effects from changes in policy (Oduro et al., 2024). When the rules for climate and energy do not change much, borrowing is easier, more investors are interested, and new ideas are encouraged to match the country's objectives (Gencer & van Ackere, 2021).
- 3. Scale Up Energy Storage Deployment: More investment should be made in different energy storage methods, for example, advanced batteries and pumped hydro. Policies should help increase the adoption of different types of storage systems to strengthen the power grid's reliability and the worth of intermittent renewables (Sánchez et al., 2022). With their ability to adjust the timing of electricity supply and fast response, storage systems are essential for fitting a large amount of renewable energy into current power grids (Wang et al., 2022).
- 4. Accelerate Research, Development, and Commercialization of Next-Generation Technologies: Continued public and

private investment in R&D for pioneering innovations—like perovskite solar cells, advanced wind turbine designs, enhanced geothermal systems, and novel biomass/ocean energy solutions—is vital (Ding et al., 2024). Focus should be on improving efficiency, further reducing costs, and overcoming technical barriers to commercialization.

Strategic public funding, technology incubators, and industry partnerships play a key role in bridging the gap between laboratory breakthroughs and scalable deployment (Mazzucato & Rodrik, 2023).

- 5. Leverage Digitalization and AI for System Optimization: Activities involving AI and the smart grid system should be encouraged to enhance energy production, usage, and control of the grid. This requires advanced ways of predicting events, preventive upkeep of systems, programs for responding to demand, and effective trading of clean-energy assets (Ukoba et al., 2024). These instruments make it possible for companies to decide fast, work more efficiently, and meet the increasing demands of modern renewable-heavy systems.
- 6. **Promote Equitable Global Clean Energy Investment:** The world community ought to work together and mobilize resources to boost renewable energy initiatives in Africa and other developing economies. It is important to treat investment gaps equally to make certain the world community can meet shared climate targets and cut emissions (Falcone, 2023). The absence of targeted funding and safety measures could result in low-income nations using more fossil fuel, which leads to increased inequality globally and delayed efforts to cut back on emitting gasses (Nwokolo et al., 2023).
- 7. Strengthen Resilient and Ethical Supply Chains: Priority should be given to spreading supply out over different sources, boosting manufacturing within countries as it can be done, and checking that lithium, cobalt, and other rare materials are obtained ethically. Social, environmental, and governance (ESG) compliance can be achieved and disruptions reduced if a business has clear supply chain visibility and risk planning. Since there are geopolitical issues and the concentration of resources, it is important to build up inventories, recycle resources, and join efforts with other countries in following responsible sourcing standards.

Conclusions

Renewable energy innovations are leading to a big switch in the energy industry towards using clean energy. Among renewables, solar and wind energy are grabbing the most attention because of their fast development and generous investment, and other types of renewables such as hydropower, geothermal, biomass, and ocean energy are also improving via purposeful innovations. The fact that renewables are economical and help promote both energy safety and public health has made it more necessary to use them everywhere.

Nevertheless, there are many challenges in the transition. Since dominant renewables produce energy in fits, a new transformation of grid systems, ways to store energy, and digital methods is very important. Using smart grids and AI applications is becoming necessary for streamlining energy use, foreseeing energy needs, and making grids more secure. The success of this transition is profoundly influenced by policy stability; consistent, long-term regulatory frameworks are crucial to fostering investment and overcoming market entry barriers.

Despite significant progress, challenges remain, particularly concerning outdated grid infrastructure, vulnerable supply chains, and disparities in clean energy investment across different regions. Addressing these systemic issues through concerted global efforts, strategic investments, and adaptive policies will be paramount. The future energy landscape will be characterized by a highly integrated, flexible, and intelligent electricity grid, predominantly powered by diverse renewable sources. Achieving global netzero emissions and ensuring a sustainable, equitable energy future hinges on continued innovation, robust infrastructure development, and unwavering commitment from all stakeholders.

References

- [1]. Ahmed, M., & Mohammed, K. I. (2024). New frontiers in solid-state and material science for manufacturing and technological growth. Journal of Basics and Applied Sciences Research, 2(4), 38-43. ajol.info
- [2]. Alvarez-Alvarado, M. S., Apolo-Tinoco, C., Ramirez-Prado, M. J., Alban-Chacón, F. E., Pico, N., Aviles-Cedeno, J., ... &

Vol. 51 No. 1 June 2025, pp. 254-275

- Rengifo, J. (2024). Cyber-physical power systems: A comprehensive review about technologies drivers, standards, and future perspectives. Computers and Electrical Engineering, 116, 109149. [HTML]
- [3]. Álvarez-Arroyo, C., Vergine, S., de la Nieta, A. S., Alvarado-Barrios, L., & D'Amico, G. (2024). Optimising microgrid energy management: Leveraging flexible storage systems and full integration of renewable energy sources. Renewable Energy, 229, 120701. uloyola.es
- [4]. Al-Thani, D. S. K., Mohamed, M. A., Jacob, F. A., Al Thani, S. A., Khan, H., Chawki, R., & Al-Maadeed, W. (2024). TECHNOLOGICAL PATHWAYS TO SUCCESSFUL CLIMATE SOLUTIONS. qnl.qa
- [5]. Asante, D., Ampah, J. D., Afrane, S., Adjei-Darko, P., Asante, B., Fosu, E., ... & Amoh, P. O. (2022). Prioritizing strategies to eliminate barriers to renewable energy adoption and development in Ghana: A CRITIC-fuzzy TOPSIS approach. Renewable Energy, 195, 47-65. [HTML]
- [6]. Augustine, C., Fisher, S., Ho, J., Warren, I., & Witter, E. (2023). Enhanced geothermal shot analysis for the geothermal technologies office. osti.gov
- [7]. Bacchetta, M., Bekkers, E., Piermartini, R., Rubinova, S., Stolzenburg, V., & Xu, A. (2024). COVID-19 and global value chains: A discussion of arguments on value chain organisation and the role of the WTO. The World Economy, 47(9), 3709-3746. econstor.eu
- [8]. Badran, G. & Dhimish, M. (2024). A comparative study of bifacial versus monofacial PV systems at the UK's largest solar plant. Clean Energy. oup.com
- [9]. Badran, G. & Dhimish, M. (2024). Comprehensive study on the efficiency of vertical bifacial photovoltaic systems: a UK case study. Scientific Reports. nature.com
- [10]. Bajwa, A., Jahan, F., & Ahmed, I. (2024). A Systematic Literature Review On AI-Enabled Smart Building Management Systems For Energy Efficiency And Sustainability. Noor alam and Ahmed, Ishtiaque, A SYSTEMATIC LITERATURE REVIEW ON AI-ENABLED SMART BUILDING MANAGEMENT SYSTEMS FOR ENERGY EFFICIENCY AND SUSTAINABILITY (December 15, 2024). ssrn.com
- [11]. Barakat, S., Osman, A. I., Tag-Eldin, E., Telba, A. A., Mageed, H. M. A., & Samy, M. M. (2024). Achieving green mobility: Multi-objective optimization for sustainable electric vehicle charging. Energy Strategy Reviews, 53, 101351. sciencedirect.com
- [12]. Barbose, G. L. (2021). Us renewables portfolio standards 2021 status update: Early release. escholarship.org
- [13]. Bertoldi, P., Economidou, M., Palermo, V., Boza-Kiss, B., & Todeschi, V. (2021). How to finance energy renovation of residential buildings: Review of current and emerging financing instruments in the EU. Wiley Interdisciplinary Reviews: Energy and Environment, 10(1), e384. wiley.com
- [14]. Biswas, P., Rashid, A., Biswas, A., Nasim, M. A. A., Chakraborty, S., Gupta, K. D., & George, R. (2024). Al-driven approaches for optimizing power consumption: a comprehensive survey. Discover Artificial Intelligence, 4(1), 116. springer.com
- [15]. Blaber, R. M. (2023). Global Demand for Energy and Fossil Fuels in 2045, with Consequent CO2 Emissions.. osf.io
- [16]. Blakers, A., Stocks, M., Lu, B., & Cheng, C. (2021). A review of pumped hydro energy storage. Progress in Energy. iop.org
- [17]. Bórawski, P., Wyszomierski, R., Bełdycka-Bórawska, A., Mickiewicz, B., Kalinowska, B., Dunn, J. W., & Rokicki, T. (2022). Development of renewable energy sources in the European Union in the context of sustainable development policy. Energies, 15(4), 1545. mdpi.com

- [18]. Boretti, A. (2022). Enhanced geothermal systems (EGS) a key component of a renewable energy-only grid. Arabian Journal of Geosciences. [HTML]
- [19]. Cao, X., Yang, X., Li, L., Shen, L., Ma, W., Yang, R., & Zou, H. (2024). Prediction model-assisted optimization scheduling strategy for renewable energy in the microgrid. Processes. mdpi.com
- [20]. Cavus, M. (2025). Advancing Power Systems with Renewable Energy and Intelligent Technologies: A Comprehensive Review on Grid Transformation and Integration. Electronics. mdpi.com
- [21]. Chen, L., Hu, Y., Wang, R., Li, X., Chen, Z., Hua, J., ... & Yap, P. S. (2024). Green building practices to integrate renewable energy in the construction sector: a review. Environmental Chemistry Letters, 22(2), 751-784. springer.com
- [22]. Chen, R., Meng, Q., & Yu, J. J. (2023). Optimal government incentives to improve the new technology adoption: Subsidizing infrastructure investment or usage? Omega. ssrn.com
- [23]. Clemente, D., Teixeira-Duarte, F., Rosa-Santos, P., & Taveira-Pinto, F. (2023). Advancements on optimization algorithms applied to wave energy assessment: an overview on wave climate and energy resource. Energies, 16(12), 4660. mdpi.com
- [24]. Clifton, A., Barber, S., Bray, A., Enevoldsen, P., Fields, J., Sempreviva, A. M., ... & Ding, Y. (2023). Grand challenges in the digitalisation of wind energy. Wind Energy Science, 8(6), 947-974. copernicus.org
- [25]. Cosgrove, P., Roulstone, T., & Zachary, S. (2023). Intermittency and periodicity in net-zero renewable energy systems with storage. Renewable Energy. sciencedirect.com
- [26]. Davidson, C. (2020). China's 2060 carbon-neutral goal could cost more than \$5 trillion. CNBC . https://www.cnbc.com/2020/10/08/chinas-2060-carbon-neutral-goal-bill-could-hit-more-than-5-trillion.html
- [27]. Deetman, S., de Boer, H. S., Van Engelenburg, M., van der Voet, E., & van Vuuren, D. P. (2021). Projected material requirements for the global electricity infrastructure–generation, transmission and storage. Resources, Conservation and Recycling, 164, 105200. sciencedirect.com
- [28]. Di Stefano, A. G., Ruta, M., & Masera, G. (2023). Advanced digital tools for data-informed and performance-driven design: a review of building energy consumption forecasting models based on machine Applied Sciences. mdpi.com
- [29]. Ding, C. J., Chen, H., Liu, Y., Hu, J., Hu, M., Chen, D., & Irfan, M. (2024). Unleashing digital empowerment: Pioneering low-carbon development through the broadband China strategy. Energy. researchgate.net
- [30]. Dubey, A., & Paudyal, S. (2023). Distribution system optimization to manage distributed energy resources (ders) for grid services. Foundations and Trends® in Electric Energy Systems, 6(3-4), 120-264. nowpublishers.com
- [31]. Dunford, M. & Han, M. (2025). Energy Dilemmas: Climate Change, Creative Destruction and Inclusive Carbon-Neutral Modernization Path Transitions. International Critical Thought. tandfonline.com
- [32]. Falchetta, G., Michoud, B., Hafner, M., & Rother, M. (2022). Harnessing finance for a new era of decentralised electricity access: A review of private investment patterns and emerging business models. Energy Research & Social Science, 90, 102587. sciencedirect.com
- [33]. Falcone, P. M. (2023). Sustainable energy policies in developing countries: a review of challenges and opportunities. Energies. mdpi.com
- [34]. Foteinis, S. (2022). Wave energy converters in low energy seas: Current state and opportunities. Renewable and Sustainable Energy Reviews. sciencedirect.com
- [35]. Gallegos, J., Arévalo, P., Montaleza, C., & Jurado, F. (2024). Sustainable electrification—advances and challenges in electrical-distribution networks: a review. Sustainability. mdpi.com

- [36]. Gallutia, D., Fard, M. T., Soto, M. G., & He, J. B. (2022). Recent advances in wave energy conversion systems: From wave theory to devices and control strategies. Ocean Engineering. academia.edu
- [37]. Gawusu, S., Zhang, X., Jamatutu, S. A., Ahmed, A., Amadu, A. A., & Djam Miensah, E. (2022). The dynamics of green supply chain management within the framework of renewable energy. International Journal of Energy Research, 46(2), 684-711. wiley.com
- [38]. Gencer, B. & van Ackere, A. (2021). Achieving long-term renewable energy goals: Do intermediate targets matter?. Utilities Policy. sciencedirect.com
- [39]. Gharbi, A., Ayari, M., & Yahya, A. E. (2023). Demand-response control in smart grids. Applied Sciences. mdpi.com
- [40]. Grafström, J., Söderholm, P., Gawel, E., Lehmann, P., & Strunz, S. (2023). Government support to renewable energy R&D: drivers and strategic interactions among EU Member States. Economics of Innovation and New Technology, 32(1), 1-24. tandfonline.com
- [41]. Guo, C., Sheng, W., De Silva, D. G., & Aggidis, G. (2023). A review of the levelized cost of wave energy based on a techno-economic model. Energies. mdpi.com
- [42]. Gupta, V., Kumar, P., & Singh, R. (2024). Unveiling the potential of bifacial photovoltaics in harvesting indoor light energy: a comprehensive review. Solar Energy. [HTML]
- [43]. Gür, T. M. (2024). Giga-ton and tera-watt scale challenges at the energy-climate crossroads: A global perspective. Energy. [HTML]
- [44]. Gu, C. & Li, H. (2022). Review on deep learning research and applications in wind and wave energy. Energies. mdpi.com
- [45]. Hamdan, A., Ibekwe, K. I., Ilojianya, V. I., Sonko, S., & Etukudoh, E. A. (2024). AI in renewable energy: A review of predictive maintenance and energy optimization. International Journal of Science and Research Archive, 11(1), 718-729. researchgate.net
- [46]. Han, C. & Yang, L. (2024). ... and Management Strategies for Expanding Green Development Projects: A Case Study of Energy Corporation in China's Renewable Energy Sector Using Machine Sustainability. mdpi.com
- [47]. Hasan, S., Hossain, I. U., Hasan, N., Sakib, I. B., Hasan, A., & Amin, T. U. (2024). Forecasting and predictive analysis of source-wise power generation along with economic aspects for developed countries. Energy Conversion and Management: X, 22, 100558. sciencedirect.com
- [48]. Hassan, Q., Hsu, C. Y., Mounich, K., Algburi, S., Jaszczur, M., Telba, A. A., ... & Barakat, M. (2024). Enhancing smart grid integrated renewable distributed generation capacities: Implications for sustainable energy transformation. Sustainable Energy Technologies and Assessments, 66, 103793. [HTML]
- [49]. Hassan, Q., Nassar, A. K., Al-Jiboory, A. K., Viktor, P., Telba, A. A., Awwad, E. M., ... & Barakat, M. (2024). Mapping Europe renewable energy landscape: Insights into solar, wind, hydro, and green hydrogen production. Technology in Society, 77, 102535. [HTML]
- [50]. Hassan, Q., Viktor, P., Al-Musawi, T. J., Ali, B. M., Algburi, S., Alzoubi, H. M., ... & Jaszczur, M. (2024). The renewable energy role in the global energy Transformations. Renewable Energy Focus, 48, 100545. [HTML]
- [51]. Harter, C. (2025). PG&E plans lithium battery plant reopening in California. GovTech. https://www.govtech.com/infrastructure/pg-e-plans-lithium-battery-plant-reopening-in-california
- [52]. Hoffstaedt, J. P., Truijen, D. P. K., Fahlbeck, J., Gans, L. H. A., Qudaih, M., Laguna, A. J., ... & Bricker, J. D. (2022). Low-head pumped hydro storage: A review of applicable technologies for design, grid integration, control and modelling. Renewable and Sustainable Energy Reviews, 158, 112119. sciencedirect.com

Vol. 51 No. 1 June 2025, pp. 254-275

- [53]. Holechek, J. L., Geli, H. M. E., Sawalhah, M. N., & Valdez, R. (2022). A global assessment: can renewable energy replace fossil fuels by 2050? Sustainability. mdpi.com
- [54]. Huang, C., Sun, C. C., Duan, N., Jiang, Y., Applegate, C., Barnes, P. D., & Stewart, E. (2021). Smart meter pinging and reading through AMI two-way communication networks to monitor grid edge devices and DERs. IEEE Transactions on Smart Grid, 13(5), 4144-4153. ieee.org
- [55]. Hu, H., Liu, Y., Li, Y., He, Z., Gao, S., Zhu, X., & Tao, H. (2024). Traction power systems for electrified railways: evolution, state of the art, and future trends. Railway Engineering Science, 32(1), 1-19. springer.com
- [56]. Hu, Z., Ran, C., Zhang, H., Chao, L., Chen, Y., & Huang, W. (2023). The current status and development trend of perovskite solar cells. Engineering. sciencedirect.com
- [57]. Jayachandran, M., Gatla, R. K., Rao, K. P., Rao, G. S., Mohammed, S., Milyani, A. H., ... & Geetha, S. (2022). Challenges in achieving sustainable development goal 7: Affordable and clean energy in light of nascent technologies. Sustainable Energy Technologies and Assessments, 53, 102692. [HTML]
- [58]. Jeroen, C., Pettersen, J., & Hyysalo, K. (2024). Enhancing Hydropower Management through Artificial Intelligence: Insights from Norway's Experience. International Journal of Artificial Intelligence, 11(1), 1-11. lamintang.org
- [59]. Jiang, H., Yao, L., Qin, J., Bai, Y., Brandt, M., Lian, X., ... & Zhou, C. (2025). Globally interconnected solar-wind system addresses future electricity demands. Nature Communications, 16(1), 1-16. nature.com
- [60]. Joshi, A., Sengar, H. S., Harshavardhan, S., Bajaj, A., Jain, A., & Hussien, R. R. (2024, October). A Novel Ultra-Lightweight Authentication Scheme for Two-Way Communication in Smart Grids. In 2024 3rd International Conference on Computing, Communication, Perception and Quantum Technology (CCPQT) (pp. 394-399). IEEE. [HTML]
- [61]. Kabeyi, M. J. B. & Olanrewaju, O. A. (2022). Geothermal wellhead technology power plants in grid electricity generation: A review. Energy Strategy Reviews. sciencedirect.com
- [62]. Kabeyi, M. J. B. & Olanrewaju, O. A. (2022). Sustainable energy transition for renewable and low carbon grid electricity generation and supply. Frontiers in Energy research. frontiersin.org
- [63]. Kelly, J. C., Elgowainy, A., Isaac, R., Ward, J., Islam, E., Rousseau, A., ... & Rustagi, N. (2023). Cradle-to-grave lifecycle analysis of US light-duty vehicle-fuel pathways: a greenhouse gas emissions and economic assessment of current (2020) and future (2030-2035) technologies (No. ANL-22/27-Rev. 1). Argonne National Laboratory (ANL), Argonne, IL (United States). osti.gov
- [64]. Khan, A. A., Laghari, A. A., Rashid, M., Li, H., Javed, A. R., & Gadekallu, T. R. (2023). Artificial intelligence and blockchain technology for secure smart grid and power distribution Automation: A State-of-the-Art Review. Sustainable Energy Technologies and Assessments, 57, 103282. [HTML]
- [65]. Khan, A., Chenggang, Y., Hussain, J., & Kui, Z. (2021). Impact of technological innovation, financial development and foreign direct investment on renewable energy, non-renewable energy and the environment in belt & Renewable Energy. [HTML]
- [66]. Khan, S. A. R., Yu, Z., Umar, M., Zia-ul-haq, H. M., Tanveer, M., & Janjua, L. R. (2022). Renewable energy and advanced logistical infrastructure: Carbon-free economic development. Sustainable Development, 30(4), 693-702. researchgate.net
- [67]. Khan, T. & Emon, M. H. (2024). Exploring the Potential of the Blue Economy: A Systematic Review of Strategies for Enhancing International Business in Bangladesh in the context of Indo Review of Business and Economics Studies. cyberleninka.ru
- [68]. Knuth, S. (2023). Rentiers of the low-carbon economy? Renewable energy's extractive fiscal geographies. Environment and Planning A: Economy and Space. sagepub.com

Vol. 51 No. 1 June 2025, pp. 254-275

- [69]. Lenox, M. & Duff, R. (2021). The decarbonization imperative: Transforming the global economy by 2050. [HTML]
- [70]. Lipton, J. T. (2024). From Fenton Hill to Fervo: is EGS approaching commercial viability?. skemman.is
- [71]. Machín, A. & Márquez, F. (2024). Advancements in photovoltaic cell materials: silicon, organic, and perovskite solar cells. Materials. mdpi.com
- [72]. Malleeshwaran, T., & Prasanna, T. (2024, March). Ai-driven iot framework for optimal energy management in consumer devices. In 2024 3rd International Conference on Sentiment Analysis and Deep Learning (ICSADL) (pp. 746-751). IEEE. [HTML]
- [73]. Mao, L., Wei, C., Zeng, S., & Cai, M. (2023). Heat transfer mechanism of cold-water pipe in ocean thermal energy conversion system. Energy. ssrn.com
- [74]. Mastrocinque, E., Ramírez, F. J., Honrubia-Escribano, A., & Pham, D. T. (2022). Industry 4.0 enabling sustainable supply chain development in the renewable energy sector: A multi-criteria intelligent approach. Technological Forecasting and Social Change, 182, 121813. sciencedirect.com
- [75]. Mazzucato, M. & Rodrik, D. (2023). Industrial policy with conditionalities: a taxonomy and sample cases. ucl.ac.uk
- [76]. Meena, S. B., Patil, P. R., Kandharkar, S. R., Hemalatha, N., Khade, A., Dixit, K. K., & Chinthamu, N. (2024). The Evolution of Smart Grid Technologies: Integrating Renewable Energy Sources, Energy Storage, And Demand Response Systems for Efficient Energy Distribution. Nanotechnology Perceptions, 1098-1109. researchgate.net
- [77]. Meng, X. & Yu, Y. (2023). Can renewable energy portfolio standards and carbon tax policies promote carbon emission reduction in China's power industry? Energy Policy. [HTML]
- [78]. Mitra, S. & Chandra, R. (2023). Deep De-carbonization and Regional Equity. nipfp.org.in
- [79]. Mulugetta, Y., Sokona, Y., Trotter, P. A., Fankhauser, S., Omukuti, J., Somavilla Croxatto, L., ... & Yussuff, A. (2022). Africa needs context-relevant evidence to shape its clean energy future. Nature Energy, 7(11), 1015-1022. shu.ac.uk
- [80]. Namdar, J., Modi, S., & Blackhurst, J. (2025). Diversify or Concentrate? Supply chain responses to policy uncertainty. Journal of Supply Chain Management, 61(1), 62-82. wiley.com
- [81]. Nefedova, L. V. & Solovyev, D. A. (2023). Current and Prospective Role of Solar and Wind Energy in Reducing CO2 Emissions in Russia. Applied Solar Energy. [HTML]
- [82]. Neill, S. P., Haas, K. A., Thiébot, J., & Yang, Z. (2021). A review of tidal energy—Resource, feedbacks, and environmental interactions. Journal of Renewable and Sustainable Energy, 13(6). aip.org
- [83]. Norbeck, J. H., Gradl, C., & Latimer, T. (2024). Deployment of Enhanced Geothermal System technology leads to rapid cost reductions and performance improvements. eartharxiv.org
- [84]. Nunes, L. J., Casau, M., Dias, M. F., Matias, J. C. O., & Teixeira, L. C. (2023). Agroforest woody residual biomass-to-energy supply chain analysis: Feasible and sustainable renewable resource exploitation for an alternative to fossil fuels. Results in Engineering, 17, 101010. sciencedirect.com
- [85]. Nwokolo, S. C., Eyime, E. E., Obiwulu, A. U., & Ogbulezie, J. (2023). Africa's Path to Sustainability: Harnessing Technology, Policy, and Collaboration. Trends in Renewable Energy, 10(1), 98-131. academia.edu
- [86]. Oduro, P., Uzougbo, N. S., & Ugwu, M. C. (2024). Renewable energy expansion: Legal strategies for overcoming regulatory barriers and promoting innovation. International Journal of Applied Research in Social Sciences, 6(5), 927-944. researchgate.net
- [87]. Ojadi, J. O., Onukwulu, E., Odionu, C., & Owulade, O. (2023). Leveraging IoT and deep learning for real-time carbon

Vol. 51 No. 1 June 2025, pp. 254-275

footprint monitoring and optimization in smart cities and industrial zones. IRE Journals. researchgate.net

- [88]. Olsson, W. & Vadeghani, S. (2024). Navigating the Integration of Artificial Intelligence in the Swedish Electricity Sector:
- i. Harnessing AI for Enhanced Efficiency and Business Value in Sweden's Energy diva-portal.org
- [89]. Onukwulu, E. C., Agho, M. O., & Eyo-Udo, N. L. (2023). Developing a framework for AI-driven optimization of supply chains in energy sector. Global Journal of Advanced Research and Reviews, 1(2), 82-101. researchgate.net
- [90]. O'Shaughnessy, E., Heeter, J., Shah, C., & Koebrich, S. (2021). Corporate acceleration of the renewable energy transition and implications for electric grids. Renewable and Sustainable Energy Reviews, 146, 111160. sciencedirect.com
- [91]. Pace, L. A., Saritas, O., & Deidun, A. (2023). Exploring future research and innovation directions for a sustainable blue economy. Marine Policy. sciencedirect.com
- [92]. Painuly, J. P. & Wohlgemuth, N. (2021). Renewable energy technologies: barriers and policy implications. Renewable-energy-driven future. [HTML]
- [93]. Palz, W. (2023). Solar Euphoria: The Rise of Photovoltaics to the Top. [HTML]
- [94]. Pandey, V., Sircar, A., Bist, N., Solanki, K., & Yadav, K. (2023). Accelerating the renewable energy sector through Industry 4.0: Optimization opportunities in the digital revolution. International Journal of Innovation Studies, 7(2), 171-188. sciencedirect.com
- [95]. Park, C. & Kim, M. (2024). Utilization and challenges of artificial intelligence in the energy sector. Energy & Environment. [HTML]
- [96]. Plocek, T. J. & Varley, R. J. (2025). Ocean Thermal Energy Conversion (OTEC) an Imminent Distributed Hundred Billion Dollar Industry. Offshore Technology Conference. [HTML]
- [97]. Qi, Y., Lu, J., & Liu, T. (2024). Measuring energy transition away from fossil fuels: A new index. Renewable and Sustainable Energy Reviews. [HTML]
- [98]. Quaranta, E. & Davies, P. (2022). Emerging and innovative materials for hydropower engineering applications: Turbines, bearings, sealing, dams and waterways, and ocean power. Engineering. sciencedirect.com
- [99]. Rao, A., Kumar, S., & Karim, S. (2024). Accelerating renewables: Unveiling the role of green energy markets. Applied Energy. [HTML]
- [100]. Rasheed, D. H. & Tambe, S. B. (2024). Advancing Energy Efficiency with Smart Grids and IoT-Based Solutions for a Sustainable Future. ESTIDAMAA. peninsula-press.ae
- [101]. Rind, Y. M., Raza, M. H., Zubair, M., Mehmood, M. Q., & Massoud, Y. (2023). Smart energy meters for smart grids, an internet of things perspective. Energies, 16(4), 1974. mdpi.com
- [102]. Ringwood, J. V., Zhan, S., & Faedo, N. (2023). Empowering wave energy with control technology: Possibilities and pitfalls. Annual Reviews in Control. sciencedirect.com
- [103]. Said, Z. & Ahmad, F. F. (2025). Maximizing solar photovoltaic efficiency with Mist Cooled sandwich bifacial panels under extreme hot climate conditions. Energy Conversion and Management. sciencedirect.com
- [104]. Sánchez, A., Zhang, Q., Martín, M., & Vega, P. (2022). Towards a new renewable power system using energy storage: An economic and social analysis. Energy Conversion and Management, 252, 115056. sciencedirect.com
- [105]. Schmitt, R. J. P. & Rosa, L. (2024). Dams for hydropower and irrigation: Trends, challenges, and alternatives. Renewable and Sustainable Energy Reviews. sciencedirect.com

- [106]. Shahzad, S. & Jasińska, E. (2024). Renewable revolution: a review of strategic flexibility in future power systems. Sustainability. mdpi.com
- [107]. Shahzad, S., Abbasi, M. A., Shahid, M. B., & Guerrero, J. M. (2024). Unlocking the potential of long-duration energy storage: Pathways to net-zero emissions through global innovation and collaboration. Journal of Energy Storage, 97, 112904.
 [HTML]
- [108]. Shi, Y., Berry, J. J., & Zhang, F. (2024). Perovskite/silicon tandem solar cells: insights and outlooks. ACS Energy Letters. [HTML]
- [109]. Simbolon, R., Sihotang, W., & Sihotang, J. (2024). Tapping Ocean Potential: Strategies for integrating tidal and wave energy into national power grids. GEMOY: Green Energy Management and Optimization Yields, 1(1), 49-65. ristek.or.id
- [110]. Stecyk, A. & Miciuła, I. (2023). Harnessing the power of artificial intelligence for collaborative energy optimization platforms. Energies. mdpi.com
- [111]. Streimikiene, D., Baležentis, T., Volkov, A., Morkūnas, M., Žičkienė, A., & Streimikis, J. (2021). Barriers and drivers of renewable energy penetration in rural areas. Energies, 14(20), 6452. mdpi.com
- [112]. Strezoski, L., & Stefani, I. (2024). Enabling mass integration of electric vehicles through distributed energy resource management systems. International Journal of Electrical Power & Energy Systems, 157, 109798. sciencedirect.com
- [113]. Sump, F. & Yi, S. (2021). Different reasons for different responses: A review of incumbents' adaptation in carbon-intensive industries. Organization & Environment. sdu.dk
- [114]. Susskind, L., Chun, J., Gant, A., Hodgkins, C., Cohen, J., & Lohmar, S. (2022). Sources of opposition to renewable energy projects in the United States. Energy Policy, 165, 112922. sciencedirect.com
- [115]. Su, Y. & Fan, Q. (2022). Renewable energy technology innovation, industrial structure upgrading and green development from the perspective of China's provinces. Technological Forecasting and Social Change. [HTML]
- [116]. Tao, R., Song, X., & Ye, C. (2022). Pumped storage technology, reversible pump turbines and their importance in power grids. Water. mdpi.com
- [117]. Thennakoon, T. M. T. N., Hewage, H. T. M., Sandunika, D. M. I., Panagoda, L. P. S. S., Senarathna, W. G. C. M., Sulaksha, L., ... & Perera, M. D. V. (2023). Harnessing the power of ocean energy: A comprehensive review of power generation technologies and future perspectives. Journal of Research Technology and Engineering, 4, 73-102. academia.edu
- [118]. Timilsina, G. R. (2021). Are renewable energy technologies cost competitive for electricity generation?. Renewable Energy. [HTML]
- [119]. Tiwari, A. & Pindoriya, N. M. (2022). Automated demand response in smart distribution grid: A review on metering infrastructure, communication technology and optimization models. Electric Power Systems Research. [HTML]
- [120]. Tolonen, E. (2024). Keeping up with the decarbonization: Conceptualizing and investigating incumbents' responses to transition pressures in the post-Paris world. Journal of Cleaner Production. sciencedirect.com
- [121]. Truong Le, P. & Van Dieu, V. (2025). Techno-Economic performance analysis of a 50MW grid connected photovoltaic power plan in Vietnam after 4.5 years of operation. Clean Energy. oup.com
- [122]. Tutak, M. & Brodny, J. (2022). Renewable energy consumption in economic sectors in the EU-27. The impact on economics, environment and conventional energy sources. A 20-year perspective. Journal of Cleaner Production. [HTML]
- [123]. Ukoba, K., Olatunji, K. O., Adeoye, E., Jen, T. C., & Madyira, D. M. (2024). Optimizing renewable energy systems through artificial intelligence: Review and future prospects. Energy & Environment, 35(7), 3833-3879. sagepub.com

Vol. 51 No. 1 June 2025, pp. 254-275

- [124]. Veers, P., Bottasso, C. L., Manuel, L., Naughton, J., Pao, L., Paquette, J., ... & Rinker, J. (2023). Grand challenges in the design, manufacture, and operation of future wind turbine systems. Wind Energy Science, 8(7), 1071-1131. copernicus.org
- [125]. Victoria, M., Haegel, N., Peters, I. M., Sinton, R., Jäger-Waldau, A., Del Cañizo, C., ... & Smets, A. (2021). Solar photovoltaics is ready to power a sustainable future. Joule, 5(5), 1041-1056. cell.com
- [126]. Wang, Q., Jiang, F., & Li, R. (2022). Assessing supply chain greenness from the perspective of embodied renewable energy—A data envelopment analysis using multi-regional input-output analysis. Renewable Energy. [HTML]
- [127]. Wang, W. H., Moreno-Casas, V., & Huerta de Soto, J. (2021). A free-market environmentalist transition toward renewable energy: The cases of Germany, Denmark, and the United Kingdom. Energies. mdpi.com
- [128]. Wang, W., Fan, L. W., & Zhou, P. (2022). Evolution of global fossil fuel trade dependencies. Energy. [HTML]
- [129]. Wang, W., Yuan, B., Sun, Q., & Wennersten, R. (2022). Application of energy storage in integrated energy systems—A solution to fluctuation and uncertainty of renewable energy. Journal of Energy Storage. [HTML]
- [130]. Wang, X., Alsaleh, M., & Abdul-Rahim, A. S. (2024). The role of information and communication technologies in achieving hydropower sustainability: Evidence from European Union economies. Energy & Environment, 35(3), 1550-1572. [HTML]
- [131]. Wang, X., Wang, H., Bhandari, B., & Cheng, L. (2024). AI-empowered methods for smart energy consumption: A review of load forecasting, anomaly detection and demand response. International Journal of Precision Engineering and Manufacturing-Green Technology, 11(3), 963-993. springer.com
- [132]. Wang, Y., Hao, L., Li, Y., Sun, Q., Sun, M., Huang, Y., ... & Xiao, L. (2022). In-situ utilization of regolith resource and future exploration of additive manufacturing for lunar/martian habitats: A review. Applied Clay Science, 229, 106673. [HTML]
- [133]. Wang, Y., Wang, R., Tanaka, K., Ciais, P., Penuelas, J., Balkanski, Y., ... & Zhang, R. (2025). Global spatiotemporal optimization of photovoltaic and wind power to achieve the Paris Agreement targets. Nature Communications, 16(1), 2127. nature.com
- [134]. Wang, Y., Xu, C., & Yuan, P. (2022). Is there a grid-connected effect of grid infrastructure on renewable energy generation? Evidence from China's upgrading transmission lines. Energy & Environment. [HTML]
- [135]. Wang, Z., Fang, G., Wen, X., Tan, Q., Zhang, P., & Liu, Z. (2023). Coordinated operation of conventional hydropower plants as hybrid pumped storage hydropower with wind and photovoltaic plants. Energy Conversion and Management, 277, 116654. [HTML]
- [136]. Wu, Y. & Zhong, L. (2025). Optimal adoption and cost-effectiveness of rooftop solar and wind turbines for community energy systems under climate change. Renewable Energy. sciencedirect.com
- [137]. Xinyu, W., Haoran, L., & Khan, K. (2025). Innovation in technology: A game changer for renewable energy in the European Union? Natural Resources Forum. [HTML]
- [138]. Yang, D., Wang, W., Gueymard, C. A., Hong, T., Kleissl, J., Huang, J., ... & Peters, I. M. (2022). A review of solar forecasting, its dependence on atmospheric sciences and implications for grid integration: Towards carbon neutrality. Renewable and Sustainable Energy Reviews, 161, 112348. researchgate.net
- [139]. Yang, X., Song, Q., Liu, Y., Yang, L., Yan, Y., Huang, J., ... & Lu, L. (2025). A multifunctional additive for enhancing the performance of single-junction perovskite and perovskite/silicon tandem solar cells. Journal of Materials Chemistry C, 13(18), 9285-9293. [HTML]
- [140]. Zhou, L., Miller, J., Vezza, J., Mayster, M., Raffay, M., Justice, Q., ... & Bernat, J. (2024). Additive manufacturing: a comprehensive review. Sensors, 24(9), 2668. mdpi.com