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Abstract: Developing a sustainable and biodegradable biocomposite for 3D printing necessitates iterative experimentation to achieve 
the desired composition and properties. Combining polylactic acid (PLA), epoxidized palm oil (EPO), and lignin offers a promising 
formulation for a 3D biocomposite filament with diverse potential applications. To optimize its performance specifically for 3D printing 
applications, the use of machine learning techniques can expedite the process of property optimization. Employing three distinct 
machine learning models, namely random forest (RF), support vector regression (SVR), and artificial neural network (ANN), facilitates 
a comparative analysis to determine the most effective approach for predicting the tensile strength values across different biocomposite 
compositions. Through model training and evaluation, the comparison reveals that both RF and SVR demonstrate superior accuracy 
compared to ANN. Notably, RF exhibits exceptional consistency, boasting an average R2 score of 0.9777 and an average mean squared 
error of 1.5475. SVR follows closely with an average R2 score of 0.9777 and an average mean squared error of 7.7751, while ANN lags 
behind with an average R2 score of 0.6551 and an average mean squared error of 117.5218. Assessing the performance of these machine 
learning models underscores their potential applicability in enhancing the production of biocomposite filaments for 3D printing, 
thereby facilitating the refinement of biocomposite properties. 

Keywords: Machine learning, ANN, SVR, RF, 3D printing 
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1.0 Introduction 

In recent years, people across various sectors, be it consumers or manufacturers, have extensively embraced 3D printing [1]. 
Manufacturers employ this technology to create items with intricate dimensions and geometries. At its core, 3D printing relies on 
a layer-by-layer deposition process, wherein a three-dimensional object is built based on a computer-aided design (CAD) model 
or a 3D model [2]. However, with the integration of CAD software and innovative materials, the progress of 3D printing can 
reach an entirely new echelon, enabling products to adapt to diverse functionalities and uses. This technology has progressed to a 
point where users can independently create their designs and translate them into tangible products [3]. This technological 
breakthrough enables the straightforward fabrication of 3D models characterized by intricate geometries and complex structures, 
consequently finding diverse applications in industries such as soft robotics [4] and biomedical devices [5,6]. 

In recent years, there are some researches that focusing on the production of bio-composite filament to improve the 
biodegradability of the 3D printing filament while improving its properties [7–10]. A group of researchers has created polylactic 
acid (PLA) reinforced with alkaline lignin biocomposite to improve the sustainability of the material however the mechanical 
properties of the filament seem to be degrading since it become brittle [11]. Anuar et. al. has discussed the properties of soda 
lignin/PLA/EPO biocomposite compared to a regular PLA filament. It shows that the mechanical properties of the biocomposite 
has increased in its performance which indicate the relevance of the biocomposite [12].  PLA thermoplastic filament has shown 
significant  potential and has been widely used in 3D printing applications [13]. It contains a few properties that contributing the 
renewability, biocompatibility and biodegradability of a material [14]. Incorporating fillers in PLA composites, such as lignin, 
help to reinforce the properties of the polymer according to Tanase et. al. The study found that the ductility of PLA biocomposites 
improved with the addition of reduced lignin concentration. However, for acetylated or unmodified lignin, the flexibility of the 
biocomposites decreased when the lignin loading was above 10 wt% [15]. The addition of plasticizer helps to counter the 
brittleness of the biocomposite as demonstrated by Awale et. al. [16]. 

Machine learning defined as computer algorithms endowed with the capacity for autonomous learning and data interpretation. 
Relying predominantly on these algorithms, human intervention for result determination is largely unnecessary [17]. The core 
objective of machine learning is to discern data patterns and construct models based on input and output data, thereby fulfilling its 
purpose [18–20]. The method that has been applied for this study is supervised learning where the algorithm undergoes training 
using available dataset examples to enable classification and prediction of system outputs  [21]. The system model's refinement 
involves adjusting parameter weights until the desired results are attained. This process is necessary to prevent issues of 
underfitting or overfitting within the system model.   

In the new era, machine learning has become a big factor in optimizing the properties of biocomposite. For instance, machine 
learning model can be utilized for predicting the compressive strength and thermal conductivity of a biocomposite. Xu et. al. has 
applied three different machine learning methods, which are deep neural network (DNN), gene expression programming (GEP) 
and optimizable Gaussian process regressor (OGPR) [22]. All of them has shown consistency in the compressive strength and 
thermal conductivity of the biocomposite which make the machine learning model more reliable. Other studies show that machine 
learning also can be used to classify the feature of  acoustic emission in biocomposite in order to evaluate the material behavior 
under challenging low temperature environments [23].  

Given the relatively limited utilization of machine learning in biocomposite applications, it becomes imperative to explore its 
potential for enhancing the integration of biocomposites in 3D printing, particularly in the optimization of their mechanical 
properties. This research delved into the application of three distinct machine learning algorithms—namely, artificial intelligence 
neural network (ANN), support vector regression (SVR), and random forest (RF)—to fine-tune the tensile strength of the 
PLA/EPO/Lignin filament. Through the evaluation of the tensile strength using the ANN, SVR, and RF models, the study 
effectively demonstrated the predictive capabilities of these models across various biocomposite compositions.  The novelty of 
this research lies in the combination of unique biocomposite materials, the specific focus on optimizing tensile strength through 
3D printing, and the application of various supervised learning techniques to achieve this optimization. The integration of 
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machine learning into the realm of material science enhances the efficiency and precision of the optimization process, 
contributing to the overall advancement of both materials’ science and machine learning applications 

2.0 Material and Methods 

2.1 Material preparation 

The oil palm empty fruit bunch (OPEFB) fibers underwent preliminary processing to eliminate impurities, collected from 
Tennamaram Palm Oil Mill, Batang Berjuntai, Selangor. Through manual sorting, sediment and kernel shells were separated from 
the fibers. After drying in a high-speed air convection oven at 60 °C for a span of 24 hours, the cleaned fibers were crushed and 
ground, yielding finer fibers. Subsequently, a sieve shaker was employed to segregate the larger OPEFB fibers. 

The separation of lignin from OPEFB fibers was executed using a chemical process involving alkaline extraction to produce 
alkaline lignin. Alkaline lignin powder was combined with EPO and PLA pellets in a manual mixing process at different weight 
fractions (phr) between PLA, EPO and lignin powder was presented in Table 1. EPO with density of 0.886 g/mL and oxirane 
oxygen content of 2.84 was obtained from Budi Oil Enterprise Sdn Bhd, Telok Gong, Port Klang, Selangor, Malaysia, while PLA 
grade 2003D in the form of pellets was supplied by NatureWorks Co. Ltd. Using the FILABOT EX6 Extruder, the mixtures were 
extruded consecutively at temperatures of 180 °C, 190 °C, 180 °C, and 50 °C. The resulting filaments were then placed in a 
desiccator with 0% relative humidity for subsequent characterization.  

Thermogravimetric analysis (TGA) of bio-composite filaments were performed using a Perkin Elmer thermogravimetric analyzer 
(TGA4000). The samples were conducted with temperature ranged from 30 °C to 600 °C with a heating rate of 10 °C/min under 
nitrogen atmosphere to examine the thermal degradation behavior. Approximately 5 mg of samples were prepared for the 
thermogravimetric analysis. Differential scanning calorimetry (DSC) was carried out using a Mettler Toledo DSC821e to obtain 
the glass transition (Tg) temperature and on-set (To) temperature. 

Table 1: Composition of PLA/lignin/EPO bio-composite 

 

 

 

 

2.2. Data collection 

The PLA/lignin bio-composite filaments underwent assessment using a universal testing machine (UTM) equipped with a 5 kN 
load cell, operating at a crosshead speed of 2.5 mm/min. The tensile strength, tensile modulus, and tensile strain of the composites 
were evaluated under room temperature conditions (25 ± 2°C) and at a relative humidity of 50 ± 5%. To determine these 
properties, filament samples were prepared and tested for each composition, employing a gauge length of 25 mm. Furthermore, 
the tensile test on the 3D-printed PLA-lignin biocomposites adhered to the guidelines of ASTM D638-14, Type I. To achieve this, 
the tensile dumbbell specimens were produced for different composition, utilizing a similar testing machine setup. The data that 
has been collected for optimizing the tensile strength optimization are stress and strain for every time the tensile testing is 
conducted. The data that will be utilized in for the machine learning model was from the initial part of the tensile testing until it 
achieves its peak stress as shown in Figure 1. 

Material Designation PLA (phr) Lignin (phr) EPO (phr) 

PLA 100 - - 

PLAL1 100 1 - 

PLAE1 100 1 5 
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Figure 1: Stress Strain Peak 

2.3. Machine learning methods 

In this paper, three different machine learning methods that has been utilized to predict the tensile strength of PLA/EPO/lignin 
biocomposite for different composition. All the machine learning model is created using Python programming using the 
Anaconda environment with Keras library as the main body for ANN development while Scikit-learn library as the main body for 
RF and SVR, while analysing the error for all machine learning model. RF model is an ensemble tree that is created from a 
previous set of training. The best split is determined from the input features or random subset of size maximum features. RF can 
reduce the variance of the results by combining diverse trees. The model of RF for regression approaches is formed from growing 
trees that depends on a random vector in which the tree predictor, h(x,k) handles the numerical values rather than class labels. The 
RF predictor is formed by taking the average over k of the trees. Equation 1 shows the general equation for RF model. 

𝑓መ =  
ଵ

஻
∑ 𝑓௕(𝑥ᇱ)஻

௕ୀଵ       (1) 

SVR, a component of the support vector machine (SVM) method, is utilized for generating continuous outputs from a finite set. It 
introduces the concept of ε-insensitive regions or hyperplanes. Rather than minimizing the error between actual and predicted 
values, SVR attempts to fit a best fit line within the hyperplane and its boundary values, known as threshold values. Due to its 
increasing quadratic complexity with a growing number of samples, SVR is applicable for small-scale datasets. The SVR 
function's approximation is represented as shown in Equation 2, while for multidimensional data, the mathematical representation 
of SVR can be referenced as in Equation 3. 

𝑓(𝑥) =< 𝑤, 𝑥 > +𝑏 = ∑ 𝑤௝𝑥௝ + 𝑏, 𝑦, 𝑏 ∈ ℝ, 𝑥, 𝑤 ∈ ℝெெ
௝ୀଵ    (2) 
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Furthermore, ANN relatively a relationship between input and output data which included with training process to get the optimal 
accuracy and consistent model. The ability to self-learning self-adaptability from previous generation made ANN a better method 
to get a better estimation than usual statistical analysis method. The architecture for ANN consists of 3 main parts, which are 
input layer, output layer and hidden layer as shown in Figure 2. Each layer will be included with its own weights, activation 
function and biases which all of them have its own functionality to produce the optimal output for the model. Weight in ANN 
model can determine which neuron has the highest impact to the output compared to other neurons while biases act as an offset 
for the output to gain the optimal fit from the given input data. The function of activation function is to filter which data that will 
be used in the next layer to eliminate some losses during the training. The mathematical model for ANN can be expressed as 
Equation 4 which consists of weights, biases, and activation function. 

 

Figure 2: ANN architecture 

∑ 𝑤௜𝑥௜ + 𝑏𝑖𝑎𝑠௠
௜ୀ௞ =  𝑤ଵ𝑥ଵ + 𝑤ଶ𝑥ଶ + ⋯ + 𝑤௞𝑥௞ + 𝑏𝑖𝑎𝑠   (4) 

2.4. Error evaluation 

Three methods of error evaluation are utilized to measure and compare the performance of each trained machine learning model. 
These methods include the coefficient of determination, also known as the R2 score, as well as the mean squared error (MSE) and 
the root mean squared error (RMSE). The R2 score serves as a statistical metric for assessing the disparity between the model's 
predicted values and the actual experimental values within the dataset. It can be expressed as shown in Equation 5. The R2 score 
ranges from 0 to 1, with higher values indicating greater accuracy of the results. 

𝑅ଶ = 1 −
∑(௒೔ି௒೛)మ

∑(௒೔ି௒೘)మ     (5) 

MSE, on the other hand, is a statistical metric that quantifies the standard deviation of the prediction error. Computed from the 
Euclidean distance, MSE always yields a positive loss value, with the error diminishing as the loss value approaches zero, as 
depicted in Equation 6. Numerous variations of MSE, including RMSE, share a similar purpose, with RMSE serving as the 
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square root of MSE. RMSE is a scaled representation of MSE, facilitating the visual depiction of errors in graphical figures, as 
shown in Equation 7. 

𝑀𝑆𝐸 =
ଵ

௡
∑ (𝑌௜ − 𝑌෠௜)

ଶ௡
௜ୀଵ      (6) 

𝑅𝑀𝑆𝐸 = ට
ଵ

௡
∑ (𝑌௜ − 𝑌෠௜)

ଶ௡
௜ୀଵ     (7) 

3.0. Results and Discussion 

3.1. Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC)  

TGA analysis of the PLA/lignin/EPO bio-composites were conducted to observe the changes in thermal characteristics of PLA 
upon addition of lignin as filler and EPO as plasticizer. Observation on the thermal behaviour of the bio-composite, mainly on the 
thermal degradation is necessary in this study due to exertion of the thermal processing such as extrusion and 3D printing that 
require material to be thermally stable. Hence, the glass transition temperature (Tg) curves of PLA/lignin/EPO were presented in 
Figure 3a. The Tg of these printed bio-composites exhibited quite similar thermal degradation behavior, where the on-set 
temperature (Tₒ) occurs at around 338 ºC, 344 ºC and 340 ºC for PLA, PLAE1 and PLAL1 respectively. The result showed that 
upon undergone another melting and cooling process of 3D printing, Tₒ of bio-composites with addition of lignin (PLAE1 and 
PLAL1) were higher compared to pure PLA. This has proven that addition of lignin had produce better thermal stability, lowering 
the rate of degradation during the 3D printing process. This behaviour will contribute to better mechanical properties of 3D 
printed bio-composites, as compared to pure PLA. 

Differential scanning calorimetry analysis was also conducted to observe the thermal features of the PLA/lignin bio-composites, 
mainly the Tg and melting temperature (Tm).These thermal properties were shown in Figure 3b. The Tg, and melting temperature 
(Tm) pure filament PLA bio-composite were 61 ºC, and 152 ºC respectively. In comparison, the Tg of PLA/lignin bio-composites 
with addition of lignin and EPO were reduced, with 59 ºC and 57 ºC for PLAL1 and PLAE1 respectively. This condition may be 
attributed to the molecular factors such as intermolecular hydrogen bond and rigid phenyl groups of lignin component. The Tm of 
PLAL1 and PLAE1 was found lower compared to pure PLA, around 150 ºC, in which about 2 ºC decrement. As explained 
previously, PLA required more time and temperature for reorganization of crystal can occur. Other than that, both PLAL1 and 
PLAE1 had two distinguishable Tm peaks at around 150 ºC and 155 ºC, resulted from the melting-recrystallization process 
occurred in the bio-composite. 
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Figure 3: 
Thermal properties of PLA/lignin/EPO bio-composites; (a) TG curves, (b) DSC curves 

3.2 Predicted results 

Table 2 presented below provides a comparison of the actual experimental tensile strength data with the predicted values 
generated by three distinct machine learning models: RF, SVR, and ANN. These machine learning models were configured in a 
simplified manner to accommodate the characteristics of a small dataset, as small datasets typically necessitate straightforward 
model adjustments for optimization. The configuration details for each model employed in this study are summarized in Table 3. 

Table 2: Previous research related to this study 

Machine Learning Model Configuration 

Random Forest 

 Number of estimators: 10 

 Random state: 0 

 Verbose: 0  

 Number of jobs: 1 

 Minimum sample split: 2 

 Maximum depth: None 

Support Vector Regression 

 Kernel: rbf 

 Degree: 3 

 Gamma: 1 

 Coefficicent: 0.0 

 Regularization parameter (C): 1.0 

 Epsilon: 1.0 

Artificial Neural Network 
 Input Layer: 1 

 Hidden Layer: 3 
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o First Layer: 30, Activation: ReLU 

o Second Layer: 20, Activation: ReLU 

o Third Layer: 10, Activation: ReLU 

 Output Layer: 1, Activation: Linear 

 Optimizer: Adam 

Table 3: Machine Learning Model Configuration 

Sample Actual Tensile Strength (MPa) 
Predicted Tensile Strength (MPa) 

RF SVR ANN 

Sample 1 32.81385 33.166747 32.809856 33.530106 

Sample 2 27.17819 27.847955 27.576785 28.12973 

Sample 3 31.02034 30.5407695 30.276263 30.96951 

Sample 4 32.92646 32.308612 32.163885 33.673714 

According to the data presented in Table 4, the machine learning models exhibited a relatively precise prediction of the peak 
stress for the PLA/EPO/Lignin filament. The standard deviation and standard error for each sample were calculated using 
Equation (8) and Equation (9) to evaluate the deviation of the predicted data. The computed standard deviations for the samples 
were 0.29746, 0.35103, 0.30828, and 0.59612, while the standard errors were 0.14873, 0.17552, 0.15414, and 0.29806, 
respectively. Analysis of the standard deviation and error derived from the predicted results indicated a minimal dispersion of the 
data from the trained models, affirming the reliability and accuracy of the trained models. This type of trend have been reported 
by Fatriansyah and co-workers in their recent publication [24]. 

𝜎 = ට
ଵ

ே
∑ (𝑥௜ − 𝜇)ଶே

௜ୀଵ       (8) 

𝜎௫̅ =
ఙ

√ே
                               (9) 

Table 4: Comparison Between Actual and Predicted Tensile Strength Data 

Sample 
R2 Score MSE 

RF SVR ANN RF SVR ANN 

Sample 1 0.99801 0.99824 0.63047 0.178121 0.156202 133.4172 

Sample 2 0.95483 0.95532 0.38117 2.794643 27.576785 152.4251 

Sample 3 0.96123 0.96026 0.79019 2.931541 2.984236 111.3717 

Sample 4 0.99682 0.99680 0.81864 0.2855498 0.286385 72.8730 

The RF, SVR, and ANN models were initially trained using the raw data spanning from the early stages of tensile testing to the 
point of reaching peak stress for each respective sample. Subsequently, a line graph was constructed to monitor the trends in 
training, validation, and prediction data for comparison of the performance of each trained model. As depicted in Figures 4 (a-d) 
and 5 (a-d), the RF and SVR models excelled in closely approximating the experimental value trends. In contrast, the ANN model 
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exhibited inaccuracies in its predictions, resulting in a consistent, linear trend that persisted until reaching the stress peak, as 
illustrated in Figure 6 (a-d). This suggests that the simpler architecture of the ANN model was inadequate for accurately 
modeling the nonlinearity of the data and capturing a more precise trend 

 

Figure 4: RF Prediction of (a) Sample 1 (b) Sample 2 (c) Sample 3 (d) Sample 4 
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Figure 5: SVR Prediction of (a) Sample 1 (b) Sample 2 (c) Sample 3 (d) Sample 4 

 

Figure 6: ANN Prediction of (a) Sample 1 (b) Sample 2 (c) Sample 3  (d) Sample 4 
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3.2. Performance Analysis 

To demonstrate the precision and consistency of both the actual experimental data and the predicted data, a scatter plot was 
generated, as depicted in Figure 7 a-c. The graph's best fit line demonstrated the proximity of the validation data's predictions to 
each trained model. Both the RF and SVR models exhibited strong predictive capabilities, as the predicted data for various 
samples were evenly distributed around the best fit line. Conversely, the ANN model slightly skewed towards the upper side of 
the best fit line. Given the limited sample size, the dataset could not entirely reflect the accuracy of the predicted data in 
comparison to the actual experimental data. 

 

Figure 7: Actual vs Prediction Graph of (a) RF model (b) SVR model  (c) ANN model 

The performance assessment of the trained RF, SVR, and ANN models was conducted using the R2 score, MSE, and RMSE. The 
R2 score, depicted in Figure 8(a) via the best fit line, served as an indicator of the accuracy level of the prediction data in relation 
to the validation data. Both the RF and SVR models displayed notably high R2 scores, signifying their accuracy and consistency. 
For the ANN model, the R2 score for the tensile strength of samples 3 and 4 exhibited a favorable level of accuracy and 
consistency, while samples 1 and 2 demonstrated intermediate and low levels of accuracy and consistency, respectively, in 
predicting the output. These findings suggest that the ANN model requires further adjustments or modifications to enhance its 
output prediction. Figure 8 illustrates the distinct performance differences among the RF, SVR, and ANN models when 
comparing the prediction data with the validation data. 
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Figure 8: (a) R2 Score (b) RMSE comparison for RF, SVR and ANN model 

Furthermore, the MSE serves the purpose of offering an assessment of the overall error in the trained models. Notably, the RF 
models exhibited the best overall MSE performance compared to the SVR and ANN models, as they consistently maintained the 
MSE value below 3. In most cases, the SVR models demonstrated low MSE values, which were comparable to the performance 
of the RF model. However, the SVR model for sample 2 displayed a slightly higher MSE value, indicating a minor inconsistency 
in the model. On the other hand, the ANN models exhibited the least favorable MSE values due to their inaccuracies and 
instability in predicting the tensile strength of each sample. Figure 8b presents the RMSE values for each machine learning 
model across different samples. The choice of RMSE over MSE in Figure 8b is attributed to RMSE being a variation of MSE that 
is easier to visualize and compare across various samples and models in this study.  

Comparing the findings of this study with prior research is essential. For instance, a group of researchers previously devised three 
separate machine learning models to forecast the compressive strength and thermal conductivity of hemp biocomposites. These 
models encompassed deep neural network (DNN), gene expression programming (GEP), and Gaussian process regressor (GSR) 
[25]. The researchers successfully developed all machine learning models with high accuracy, even when working with a limited 
dataset for the experiment. Moreover, Lyngdoh et al. utilized the ANN model to predict the strain-sensing ability for a nano-
engineered cementitious composite, employing approximately 3000 collected datasets [26]. The ANN models exhibited a strong 
correlation between the predictive effectiveness and the comparison of simulation results with experimental outcomes. 
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Nevertheless, several related studies were referenced, although not directly focused on composite materials, particularly in the 
context of biocomposite applications, as the concept remains within the realm of interest. For instance, Lin et al. have delved into 
the performance evaluation of four distinct machine learning models, including linear regression, the Lasso algorithm, K-nearest 
neighbor (KNN), and gradient boosting [27]. The research highlights the variation in performance among different machine 
learning models for the specific data collected. Table 5 below summarized the compared results from the recent studies. 

In light of this, the current study stands as a promising endeavor in predicting the tensile strength of 3D printing. 

Table 5: Error Evaluation Comparison Between RF, SVR and ANN 

Material Characterization Optimization Method References 

Hemp biocomposite Compressive strength 

and thermal conductivity 

ANN [28] 

Nano-engineered 

cementitious composite 

Strain-sensing ability DNN, GEP, GSR [25] 

Fibrous paper material Failure strain, effective 

stiffness, and maximal 

stress of fibre networks 

under tensile test 

Linear regression, Lasso 

algorithm, KNN and 

gradient boosting 

[29] 

4. Conclusions 

The analysis compares three models for predicting the tensile strength of a PLA/EPO/Lignin biocomposite filament. Random 
Forest (RF) outperforms Support Vector Regression (SVR) and Artificial Neural Network (ANN), exhibiting the highest average 
R2 score of 0.9777 and the lowest average MSE value of 1.5475 across various sample compositions. While SVR shows 
generally accurate predictions, inconsistencies, particularly with sample 3 data, prompt the need for modifications. The ANN 
model, while promising, suffers from unreliability and inconsistency due to a relatively small training dataset, suggesting 
potential improvement with an expanded dataset. To refine optimization, considerations include increasing dataset size during 
training, exploring alternative regression models like XGBoost and KNN, and tuning specific parameters for SVR and ANN. 
Additionally, integrating optimization models such as genetic algorithms or particle swarm optimization could enhance prediction 
accuracy for biocomposite properties. 
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