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Abstract – The southern part of the Mozambique Channel, subject to complex oceanic conditions with variable wave heights, poses 
challenges for navigation and economics activities such as fishing, which are essential for the communities in Southwest of Madagascar. 
This study proposes a model based on neural networks to forecast wave heights. By regionalizing the study area, this models enhances 
forecasting accuracy, contributing to maritime safety and risk management. 
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1. INTRODUCTION : 

Many communities in Southwest of Madagascar relies on navigation and fishing in the southern Mozambique Channel, an area 
with complex weather conditions that make navigation risky. Unstable wave heights pose a challenge for maritime safety, 
particularly for local fishermen. This study focuses on this region (22°S to 29°S, 36°E to 43°E) and proposes a numerical model 
using neural networks for short-term wave height forecasting. The aim is to improve maritime safety and support economics 
activities such as fishing and tourisms. 

 

2. METHODOLOGIES : 

The wave height data used in this study are daily records collected over 40 years (from  first January 1979 to December 31, 2018) 
from the ECMWF site. These data are structured into a three-dimensional matrix (latitude × longitude × days). The first step of the 
analysis involves calculating monthly climatological averages, followed by the application of area classification using the Kohonen 
network. 
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2.1. Regionalization via Kohonen Network  

The self-organizing maps of Kohonen is a neural method developed by Teuvo Kohonen in 1982, used for automatic classification 
tasks. [ABLAYE, 2018]. This model belongs to the class of unsupervised neural networks, meaning that no human intervention is 
being required and minimal information is needed regarding the characteristics of the input data. Kohonen maps will discover 
relationships of  which exist among the input data [HUGUES, 1998]. 

 

2.1.1. Monthly Climatological Average of Wave Heights: 

The monthly climatological averages refer to the mean wave heights calculated for each month over a long period, providing a 
reference for climatic conditions for each month. These averages are used for classification using the Kohonen network. 
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𝑇 : total number of months during the period   

𝑋௜  : value of the i-th series   

𝑋ప ௠௢௬௖௟ప௠
തതതതതതതതതതതത : climatological average 

 

2.1.2. Kohonen Network Learning: 

The learning rule for a neuron 𝑗 belonging to the variable topological neighborhood of the winning neuron 𝑖(𝑥) describes a rotation 
of the weight vectors toward the input vector and is stated as follows: 

𝜔௝(𝑛 + 1) = ቊ
𝜔௝(𝑛) + 𝜂(𝑛)ൣ𝑥 − 𝜔௝(𝑛)൧    𝑠𝑠𝑖 𝑗 ∈ Λ௜(௫)(𝑛)

𝜔௝(𝑛)                                       𝑠𝑠𝑖 𝑗 ∉  Λ௜(௫)(𝑛)
                        

Λ௜(௫) : topological neighborhood around the winning neurons at discrete time   

𝑛, 𝜂(𝑛) : neighborhood function that includes a learning rate function. 

𝜔௝  : synaptic weight vectors related to the output neuron   

In the case of a Gaussian neighborhood function around the winning neurons 𝑖(𝑥), 𝜂(𝑛)is expressed as follows: 

𝜂(𝑛) = 𝛼(𝑛). 𝑒
ି

ቛೝೕషೝ೔(ೣ)ቛ
మ

మ഑(೙)మ     , 𝑗 ∈ Λ௜(௫)(𝑛)                                                         

ฮ𝑟௝ − 𝑟௜(௫)ฮ : distance between neuron 𝑗 and the winning neuron 𝑖(𝑥) 

𝛼(𝑛) : adaptation rate of the neurons located within  Λ௜(௫)(𝑛).  



                     International Journal of Progressive Sciences and Technologies (IJPSAT) 
                     ISSN: 2509-0119.  
                     © 2024 Scholar AI LLC. 
        https://ijpsat.org/                                                      Vol. 48 No. 1 December 2024, pp. 462-470 

 
Vol. 48 No. 1 December 2024               ISSN: 2509-0119 464 

2.2. Modeling and Forecasting Technique using Artificial Neural Networks 

Modeling plays a crucial role in understanding and anticipating variations in climatic parameters such as wave heights by integrating 
historical wave height data from the past 40 years. We use feedforward neural networks because of their ability to model complex 
nonlinear relationships. 

 

Figure 1: perceptron 

𝑤௜  : Weights,  𝑥௜  : A mulƟple input signal; 𝑤଴ : addiƟonal input or bias,  𝑦଴ : output signal 

 

2.2.1. Data normalization::  

It is a step that consists of transforming the data to bring them to the same scale, generally between « 0 and 1 » ou « -1 and 1 ». 

𝑥ᇱ =
௫ି௫೘೔೙

௫೘ೌೣି௫೘೔೙
 ,    𝑥ᇱ : normalized data;;  𝑥: raw data ;  

   𝑥௠௜௡  , 𝑥௠௔௫  : the minimum and maximum values of the series;  

 

2.2.2. Feedforward network architecture:  

A feedforward neural network chains together different layers of neurons, each layer being a function of the previous one. If the 
input vector is 𝑥 ∈ ℝ, the first layer performs a linear or affine operation on x, then it computes a nonlinear function of the result: 

 𝑧 = 𝑊[ଵ]𝑥 + 𝑏[ଵ]  and then  𝑎[ଵ] = 𝑔[ଵ]൫𝑧[ଵ]൯  [RIJA at al., 2022]. 

𝑊[ଵ] : first weight matrix of size 𝑛ଶ × 𝑝 ;  𝑏[ଵ] : offset vector of size 𝑛ଶ × 1 

𝑔ଵ : activation function, generally nonlinear (when we write 𝑔[ଵ](𝑧) it will be applied to all coordinates of 𝑧).  

The k-th layer is then written as a function of the previous one: 

𝑎[௞] = 𝑔[௞]൫𝑊[௞]𝑎[௞ିଵ] + 𝑏௞൯ 

𝑧[௞] = 𝑊[௞]𝑎[௞ିଵ] + 𝑏௞ 

𝑊[௞] : weight matrix of size 𝑛[௞ାଵ] × 𝑛[௞] ;  𝑏[௞] : offset vector of size 𝑛[௞ାଵ] × 1, and so on, up to the output layer l. 

𝑦ො(𝑥, 𝑊, 𝑏) = 𝑔[௟]൫𝑊 [௟]𝑎[௟ିଵ] + 𝑏ᇱ൯ 

After generating the output signal from a normalized series, we proceed to denormalization to return into the original data scale. 
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 Activation function : 

This is a function that establishes a non-linear relationship, giving the model more flexibility compared to linear regression 
[RANDRIANASOLO, 2023]. 

Table 1: Activation function 

Activation function Mathematical expression Data scale 

Sigmoïde 
𝜎(𝑧) =

1

1 + 𝑒ି௭
 

[0,1] 

 

3. RESULTS 

3.1. Results of classification using the Kohonen network 

The results obtained from the classification using the Kohonen network show a segmentation of the data into three classes (fig.2). 
The neurons organized themselves into clusters corresponding to similar wave height conditions in each of the studied areas. To 
distinguish the three sub-areas, they need to be named and colored : zone A is colored yellow, zone B is in green, and zone C is in 
red. 

 

Figure 2: Classification by zone according to similarities in wave heights 

3.2. Modelling result 

The results obtained show that the neural network model accurately predicts the wave height for three study areas. The figures 
below show all the signs of the models performance. 

3.2.1. Hyperparameter Adjustment 

The fixed "Lag" at 5 indicates that the previous 5 periods are considered uniformly informative for prediction in each area, 
suggesting a common temporal dynamic. zones A and C, requiring a larger hidden layer, suggest a more complex data structure 
requiring a deeper model for better generalization. zone B, with fewer neurons, requires a less complex model that generalizes 
better, despite slightly lower training performance.  

L
A

T
IT

U
D

E



                     International Journal of Progressive Sciences and Technologies (IJPSAT) 
                     ISSN: 2509-0119.  
                     © 2024 Scholar AI LLC. 
        https://ijpsat.org/                                                      Vol. 48 No. 1 December 2024, pp. 462-470 

 
Vol. 48 No. 1 December 2024               ISSN: 2509-0119 466 

Table 2: Hyperparameter 

 Lag hiddenLayerSize Train Validation Test 

zone A 5 35 78% 11% 11% 

zone B 5 18 73% 12% 15% 

Zone C 5 35 80% 9% 11% 

 

3.2.2. Mean squared error 

For zone A (fig. 3), training over 9 epochs shows a stabilization of the validation error starting from epoch 3, indicating good 
generalization, with the best validation performance at 0.030495 and a low discrepancy with the test error. For zone B (fig. 4), the 
model achieves its best performance at epoch 11 with a MSE of 0.03444 in validation and a stable test error, confirming its accuracy. 
Zone C (fig. 5) shows a rapid stabilization of the error starting from epoch 4, with a MSE of 0.019483 in validation, also reflecting 
good generalization. 

Zone A  Zone B Zone C 

 

Figure 3: Quadratic error-zone A 

 

Figure 4: Quadratic error -zone B 

 

 

Figure 5: Quadratic error -zone C 

 

 

3.2.3. Comparison of Model Targets, Outputs and Errors as a Function of Time 

Figures 6, 7, and 8 show that the models of the three zones (zone A, zone B, zone C) generally follow the trends of the time series, 
with low and random prediction errors, although they struggle to predict certain abrupt variations. The histograms presented in 
figures 9, 10, and 11 illustrate the error distributions for each zone, which are mostly concentrated around zero, indicating overall 
fairly accurate predictions despite some extreme errors. Overall, the model captures the general trends of the time series well, with 
generally small errors.  
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Zone A Zone B Zone C 

 

Figure 6:network quality-zone A 
 

Figure 7: network quality -zone B 

 

Figure 8: network quality -zone C 

 

Figure 9:Error histogram-A 

 

Figure 10: Error histogram -B 

 

Figure 11: Error histogram -C 

 

3.2.4. Neural Network Regression Model 

The regression lines (fig. 12, fig.13, fig. 14) show strong correlations (> 0.90) between predicted and actual values for the training, 
validation, and test sets, indicating that the model captures the trends in the data well. Points close to the diagonal line demonstrate 
good performance, with a correlation coefficient R close to 1, indicating a strong linear relationship. The results for the three areas 
confirm that the regression models are very effective across the entire dataset, with excellent generalization. The high R values and 
the linear relationship described by an equation suggest a precise, regularized, and reliable model for prediction. 
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Zone A Zone B Zone C 

 

Figure 12: regression model -A 
 

Figure 13: regression model -B 

 

Figure 14: regression model -C 

 

3.3. Résultat de prévision 

Zone A : the Figure 15 and Table 3 present the forecast and observed wave heights for the first 10 days of a year, along with the 
corresponding deviations. The deviations are low, ranging from 0.02 m to 0.30 m. This indicates that the models predict the data 
with high accuracy. 

Table 3: Comparison between Observation and Forecast 
(denormalized values) 

Observation forecast deviation 

1er Jan 2,242 2,201 0,042 

2 Jan 2,228 2,201 0,069 

3 Jan 2,271 2,159 0,112 

4 Jan 2,399 2,121 0,278 

5 Jan 2,396 2,122 0,274 

6 Jan 2,348 2,148 0,200 

7 Jan 2,221 2,160 0,061 

8 Jan 2,155 2,135 0,020 

9 Jan 2,254 2,094 0,160 

10 Jan 2,394 2,085 0,309 

 

Zone B : the figure 16 and Table 4 show the results of the wave height forecasts for zone B. The neural network model generally 
follows the variations of the observed data, with forecasts typically lower than the observations. The discrepancies range from 0.014 
m (January 7) to 0.233 m (January 5), indicating good accuracy on some days, but larger errors on others. The general trend is well 
captured by the forecasts. 
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Figure 15: 10-day forecast-zone A 
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Table 4: Comparison between Observation and Forecast 
(denormalized values) 

Observation forecast deviation 

1er Jan 1,974 1,855 0,119 

2 Jan 1,973 1,900 0,073 

3 Jan 2,076 1,971 0,105 

4 Jan 2,171 1,953 0,218 

5 Jan 2,134 1,901 0,233 

6 Jan 2,048 1,898 0,150 

7 Jan 1,944 1,930 0,014 

8 Jan 1,946 1,906 0,040 

9 Jan 2,012 1,900 0,112 

10 Jan 2,109 1,937 0,172 

 

Zone C : The differences between observations and forecasts range from 0.028 m to 0.216 m (Table 5). This indicates that the 
model is more accurate on some days than others. The forecasting errors are generally small, but certain values (such as those from 
January 4 and January 5) show the largest discrepancies, suggesting that the model might struggle to capture certain peaks or more 
sudden variations in the wave height data. The neural network model (figure 17) correctly predicts the general trend of wave heights, 
but it is sometimes exhibits significant errors, particularly for specific days. 

Table 5: Comparison between Observation and Forecast 
(denormalized values) 

Observation forecast deviation 

1er Jan 1,649 1,621 0,028 

2 Jan 1,701 1,663 0,038 

3 Jan 1,776 1,673 0,103 

4 Jan 1,868 1 ,652 0,216 

5 Jan 1,827 1,630 0,197 

6 Jan 1,722 1,627 0,095 

7 Jan 1,682 1,637 0,045 

8 Jan 1,702 1,648 0,054 

9 Jan 1,721 1,649 0,072 

10 Jan 1,777 1,640 0,137 

 

Figure 16: 10-day forecast - zone B 

 
Figure 17 : 10-day forecast - zone C 
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4. DISCUSSION 

The linear regression results of this study, with R² values ranging from 0.62 to 0.75 and RMSE between 8% and 11.89%, are similar 
to other research such as the Chawla et al. (2013), demonstrating the model's effectiveness in complex maritime environments. 
Compared to Kamranzad et al. (2011) and Kazeminezhad et al. (2005), our model shows the best performance and higher accuracy. 
The efficiency of neural networks is confirmed by the low MSE in all three zones, thanks to optimized hyperparameter tuning. The 
rapid stabilization of error from the early epochs of training, consist with Hsieh's observations (2009), validates the robustness of 
our model. It achieves performance comparable to that of Shamshirband et al. (2020), with R² values exceeding 0.90. 

 

5. CONCLUSION 

The model's training shows a good generalization across the three zones. Zone A stabilizes its error at epoch 3 with an MSE of 
0.030495, Zone B reaches its best performance at epoch 11 with an MSE of 0.03444, and Zone C stabilizes quickly at epoch 4 with 
an MSE of 0.019483. The regressions show high correlations (R > 0.90) between the actual and predicted values. The errors are 
concentrated around zero, indicating a good model accuracy. The discrepancies between observations and forecasts are small, 
further demonstrating the model’s accuracy, suggesting that the model generally predicts well, except for certain sudden variations. 
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