

Problématique Du Dimensionnement D'un Collecteur Pouvant Assurer Le Drainage Des Eaux De Ruissellement Du Site Royal Dans La Ville Province De Kinshasa /République Démocratique Du Congo

Joseph OMALOTAHE DIMANDJA $^{\rm 1}$ and NZUMBA KIMBEMBI Marie Liliane $^{\rm 2}$

¹Ingénieur Géomètre – Topographe et Assistant à l'Institut National du Bâtiment et des Travaux Publics (INBTP)

²Ingénieure Géomètre – Topographe et Assistante à l'Institut National du Bâtiment et des Travaux Publics (INBTP)

Correspondant: Joseph OMALOTAHE DIMANDJA

Résumé – Notre réflexion dans cette démarche scientifique consiste à dimensionner un collecteur en béton armé pour l''évacuation des eaux pluviales du site de royal en République Démocratique du Congo plus précisément dans la ville province de Kinshasa pour les déverser dans la rivière Gombe en système d'égout séparatif, ce collecteur longe l'avenue avec des dalles amovibles.

Cette étude montre les étapes suivies pour le dimensionnement et le choix de la section du collecteur principal qui versera les eaux dans l'exutoire de la rivière Gombe.

Apres tout calcul inclus nous avons trouvé les éléments ci-après:

- Une surface d'apport de 24, 2550 hectar
- Un débit de 2,934 m^3/s ,
- Avec comme dimension de l'ouvrage : B = 0,90m ; H = 1,20m

Mots Clés – Dimensionnement, Collecteur, Assainissement, Site, Egout, Exutoire.

1. Introduction

La ville province de Kinshasa se trouve de plus en plus confrontée aux problèmes de gestion des eaux pluviales avec des conséquences parfois dramatiques sur les citadins et leur patrimoine ainsi que sur l'environnement.

Suite à l'abondance du réseau hydrographique de la ville de Kinshasa qui est constitué des grands cours d'eau, des ruisseaux et des marigots comme exutoires, le réseau d'assainissement de la ville de Kinshasa ne devrait être ni bouché, ni non entretenu, ni insuffisant et pourtant il est presque inexistant. Ce entraine des phénomènes de plus en plus fréquents des inondations de ladite ville.

Le site de royal se trouvant dans la zone basse de la ville province de Kinshasa, commune de la Gombe, avec une faible pente de son bassin versant fait qu'en cas de pluie, l'eau y stagne et rend incommode l'exploitation du site.

Vol. 47 No. 2 November 2024 ISSN: 2509-0119 582

Cet article se justifie par la nécessité de faire face au problème de gestion des eaux et de l'assainissement du site de royal. Sur ce, le dimensionnement d'un collecteur s'avère nécessaire pour atteindre cet objectif.

2. MÉTHODOLOGIE

La méthodologie suivie pour atteindre l'objectif scientifique fixé comprend des grandes lignes suivantes :

- Prendre connaissance de la topographie de la ville de Kinshasa en général et en particulier celle du site royal, en consultant des ouvrages ayant trait à notre thématique,
- Réunir toutes les informations nécessaires en utilisant les documents techniques issus de l'administration tant nationale que provinciale ayant trait non seulement à l'assainissement de la ville province de Kinshasa mais aussi à la pluviométrie de cette dernière. Vu le caractère sensible de cette dernière, les informations mises à notre disposition étaient très sélectives;
- Faire une descente sur terrain dans le souci de compléter d'autres informations ;
- Elaborer un cheminement de calcul rigoureux pouvant nous permettre de dimensionner notre collecteur.

3. PRÉSENTATION DES RÉSULTATS

3.1. Calcul de surface d'apport

Pour calculer la superficie d'un bassin versant, d'un versant ou d'une surface d'apport, l'on procède soit par la méthode de double superficie, soit par l'usage de planimètre, soit par la décomposition de la surface à des figures géométriques simples.

La méthode régulièrement utilisée est celle de la décomposition de la surface à des figures géométriques simples à savoir :

- Le rectangle
- Le triangle
- Le trapèze

Les formules utilisées sont :

- Pour le rectangle $S = L \times I$
- Pour le triangle $S = \frac{B \times H}{2}$
- Pour le trapèze $S = \frac{(B+b)x H}{2}$

Avec :

B: Grande base pour le trapèze

I: largeur

et base pour le triangle

H: hauteur

b : Petite base pour le trapèze

s = superficie

L: Longueur

Pour ce qui concerne notre étude nous avons subdivisé la zone d'étude à des figures géométriques telles que précitées pour avoir une surface totale de : **24**, **2550** *ha*

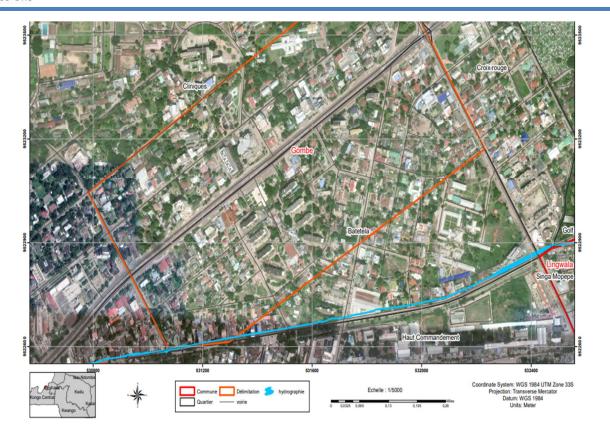


image 1: plan de situation du site Royal

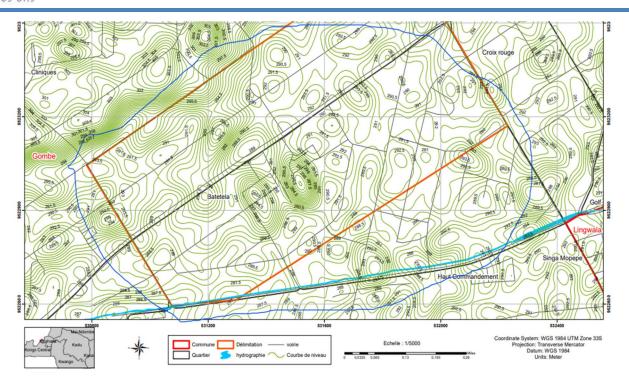


image 2: plan topographique de la zone en étude (Royal)

3.2. Calcul de débit

Le débit est un volume d'eau collecté sur une agglomération, un bassin versant, un versant ou une surface d'apport pendant une unité de temps. Il est calculé en fonction de l'exutoire ou d'un point de calcul d'un réseau ou d'un schéma de collecte des données. Il est toujours exprimé en mètre cube par seconde (m^3/s) ou en litre par heure (l/h).

Un débit collecté dépend des éléments caractéristiques suivants :

- De la surface du bassin versant, versant ou surface d'apport
- Du coefficient de ruissellement
- De l'intensité des précipitations
- De la nature physique du bassin versant, versant et surface d'apport (forme et pente en particulier).

En assainissement urbain, il existe trois méthodes permettant de calculer le débit d'eau de ruissellement. Ces méthodes sont :

- La méthode rationnelle
- La méthode superficielle
- La méthode linéaire

Parmi ces trois méthodes susmentionnées, nous avons optés pour la méthode rationnelle, cette méthode est utilisée pour des agglomérations moyennes, c'est-à-dire ayant une superficie moyenne. Cette limitation s'explique en général pour de raison de la longueur des calculs auxquels elle conduirait. Toutefois si les facteurs indispensables à son application sont réunis, c'est la meilleure de trois méthodes à cause de la rationalisation des résultats.

La formule relative à cette méthode est :

Q = K.C.I.A

Avec:

Q: Débit en Vs

https://ijpsat.org/

C: Coefficient de ruissellement pondéré

I = Intensité de précipitation en l/ha/sec

A = Superficie du bassin versant, versant ou surface d'apport en ha

K : Coefficient lié à l'intensité (2,78)

Tableau 1 : surface d'apport et leur coefficient de ruissellement

SURFACE D'APPORT	COEFFICIENT DE RUISSELLEMENT		
Habitation très dense	0,90		
Habitation dense	0,60 à 0,70		
Habitation moins dense	0,40 à 0,50		
Surface imperméable (toiture, chaussée	0,70		
Chaussées non revêtues	0,35 à 0,60		
Allée ravier	0,20		
Surface boisée	0,50		
Espace vert	0,20 à 0x05		
Revêtement en enrobé	0,80 à 0,90		
Revêtement en béton	0,70 à 0,90		
Revêtement en enduit superficiel	0,35 à 0,40		
Sol imperméable (argileux nus	0,40 à 0,65		

ISSN: 2509-0119

3. 3. Intensité de précipitation

Pour ce qui est de l'intensité, nous sommes partis des données pluviométriques de la ville province de Kinshasa.

Tableau 2: pluviométrique de la ville province de Kinshasa

LA PLUVIOMETRIE DE POINTE DE LA VILLE DE KINSHASA						
INTENSITE D'EAU MENSUELLE DE L'ANNEE 1998						
Mois	Intensité	Unité				
janvier	185,5	mm				
Février	15	mm				
Mars	320,3	mm				
Avril	33	mm				
Mai	192	mm				
Juin	0	mm				
Juillet	18,8	mm				
Aout	0,8	mm				
Septembre	42,6	mm				
Octobre	172,3	mm				
Novembre	399,80	mm				
Décembre	112,6	mm				

Source : Station météo de Kinshasa (Mettelsat)

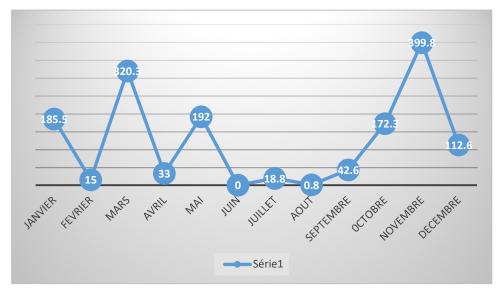


Figure 1: Histogramme des précipitations

Nous avons considéré le mois de novembre car ayant la pluviométrie la plus élevée soit 399,80 mm/Mois , Considérant qu'il pleut environ 25 Jours/Mois.

Nous avons donc:

- $\frac{399,80}{25} = 15,992 mm/Jours$
- $I = \frac{15,992}{\frac{15}{60}} = \frac{15,992}{15} \times 60 = 63,968 \, mm/h$
- $I = 63,968 \, mm/h \approx 64 \, mm/h$

Après avoir déterminé les valeurs de l'intensité de précipitation, du surface d'apport et déduit celle de coefficient de ruissellement nous pouvons calculer le débit.

$$Q = K.C.I.A$$

$$Q = 2,78x0,68x64x24,2550$$

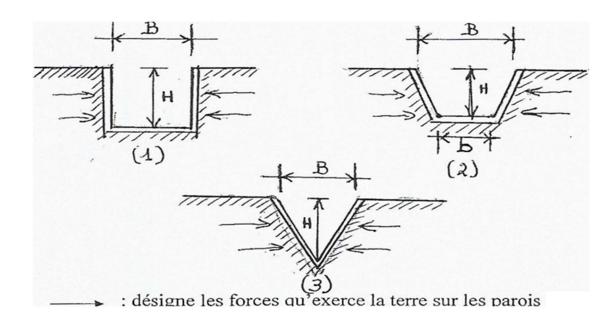
$$Q = 2934,505728 l/s$$

$$Q_0 = 2,934 \, m^3/s$$

3.4. Dimensionnement

Par les ouvrages de collecte des eaux on entend les caniveaux, les collecteurs et les canaux. Ces ouvrages ont pour finalité l'évacuation rapide hors des agglomérations des eaux collectées. Ils ne se diffèrent qu'aux dimensions de leurs sections.

Normalement, les dimensions d'une section d'un canal ou exutoire sont supérieures aux dimensions d'un collecteur. Celles d'un collecteur sont supérieures aux dimensions d'un caniveau.


Quant à leur disposition, le caniveau est disposé de manière à servir le collecteur. Et le collecteur est disposé de manière à servir un canal ou un exutoire.

Pour assurer leur fonction, ces ouvrages doivent être dimensionnés correctement pour éviter le sous-dimensionnement ou le surdimensionnement.

On distingue plusieurs formes de section des ouvrages de canalisation des effluents. Parmi elles nous pouvons citer :

- La section de forme triangulaire ;
- La section de forme rectangulaire ;
- La section de forme trapézoïde.

Croquis 1: illustration des formes d'ouvrages

Pour ce qui concerne notre ouvrage, nous avons optés pour une forme rectangulaire et ces dimensions sont déterminées par les formules hydrauliques usuelles ci-après :

$$Q = S_m x V$$

Avec:

$$Q = d\acute{e}bit (m^3/S)$$

Sm: Surface mouillée (m²)

Vh: *Vitesse hydraulique* (*m/S*)

La vitesse s'obtient à partir de la formule de Bazin ci-après.

$$V = \underbrace{87 \sqrt{R.I.}}_{1 + \underbrace{8}_{\sqrt{R}}}$$

Dimensionnement proprement dite

Le dimensionnement d'un collecteur consiste juste à répondre à une question capitale que l'on se pose lorsqu'on trouve le débit d'eau à évacuer. La question se résume à ce mot : quelle sont les dimensions pouvant évacuer la quantité d'eau récoltée ?

• Calcul de la surface mouillée : $S_m = B x H$

$$S_m = 0.9 x 1.2$$

$$S_m = 1,08 m^2$$

• Calcul du périmètre mouillé : $P_m = 2H + B$

$$P_m = 2 \times 0.9 + 1.20$$

 $P_m = 3.3 m$

• Calcul du rayon hydraulique : $R_h = \frac{S_m}{P_m}$

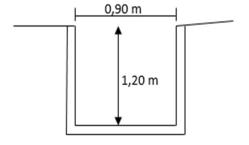
$$R_h = \frac{1,08}{3,3}$$

$$R_h = 0.327272727 m$$

• Calcul de la vitesse hydraulique : $V_h = \frac{87\sqrt{R.I}}{1+\frac{Y}{\sqrt{R}}}$

$$V_h = \frac{87\sqrt{0,3272727} \times 0,01}{1 + \frac{0,46}{\sqrt{0.32727272}}}$$

$$V_h = 3,647449449 \text{ m/S}$$


• Calcul de débit pleine section : $Q = S_m x V$

$$Q = 1,08 m^2 x 3,647449449 \text{ m/S}$$

 $Q_{ps} = 3,28270 m^3$

$$QPS > Q_0 Soit \ Q_{ps} = 3,28270 \ m^3 > Q_0 = 2,934 \ m^3/s$$

D'où nous pouvons conclure que les dimensions ci – haut peuvent nous permettre d'évacuer la quantité d'eau récoltée sur le site royal.

Croquis 2 : illustration des dimensions de l'ouvrage

Avec:

$$H = 1.20m, B: 0.90m$$

3.5. Evaluation du coût au mètre linéaire

Le coût estimatif est donné au mètre linéaire pour les travaux de construction du caniveau du site royal.

NB: Le radier et les voiles sont en béton armé ainsi que les dalles amovibles.

3.5.1. Calcul d'armatures des voiles et de radier à vide.

1. Moment dû à la poussée de terre sur la hauteur des voiles de 1,55m

$$M = K.\gamma_{sol} x \frac{h^2}{2} x \frac{h}{3} x 1,35$$

$$M = 0,33 x 1800 x \frac{1,55^2}{2} x \frac{1,55}{3} x 1,35 = 497,695 kgm$$

$$M = 49769.5 kg, cm$$

2. Moment dû à la surcharge sur le remblai de 2t/m

$$M = K.p x \frac{h^2}{2} x 1,5$$

$$M = 0,33 x 2000 x \frac{1,55^2}{2} x 1,5 = 1189,237 kgm$$

$$M = 118923,7 kg.cm$$

 $Moment\ total: 49769,5 + 118923,7 = 168693,2kgcm$

L'acier de résistance 300MPa

$$fyd = \frac{fyk}{1,15} = \frac{3000}{1,15} = 2608kg/cm^2$$

Le bras de levier $Z = \frac{7}{8} \times 20 = 17,5$

La section des armatures

$$As = \frac{M}{Z \cdot fyd} = \frac{168693,2}{17,5 \times 2608} = 3,7cm^2$$

Nombre des barres de HA10

Nombre :
$$\frac{3,70}{0.78} = 5 \implies 5HA10/m$$

3.5.2. Calcul des armatures des dalles amovibles

Poids propre de la dalle

$$p = 1m \, x \, 0.20m \, x \frac{2500kg}{m^3} = 500kg/m$$

Le moment fléchissant dû au poids propre

$$M = 1,35 x \frac{pl^2}{8} = 1,35 x 500 x \frac{1,10}{8} = 102,094 kgm$$
$$M = 10209,4 kgcm$$

Moment dû au convoi, l'essieu de 13 tonnes et la roue de 6,5 tonnes

$$M = 1.5 x 1.3 x \frac{pl}{4} = 1.5 x 1.3 x \frac{6500 x 1.1}{4}$$

$$M = 3485,63kgm \Rightarrow 348563kgcm$$

Moment total: 10209,4 + 348563 = 358772,4kgcm

L'acier de fyk = 400MPa

$$fyk = \frac{4000}{1,15} = 3478kg/cm^2$$

Le bras de levier $Z = \frac{7}{8}d = \frac{7}{8} \times 20 = 17,5 cm$

https://ijpsat.org/

$$As = \frac{M}{Z \cdot fyd} = \frac{358772,4}{17,5 \times 3478} = 6 \text{ cm}^2$$
, ce qui donne 4HA14

Tableau 3: devis estimatif et quantitatif au mètre linéaire

N°	DESIGNATION DES POSTES	UNITES	QUANTITE	PRIX UNITAIRE EN \$	PRIX TOTAL EN \$		
1	Installation et repli chantier			FF	150		
2	Terrassement						
2.1	Déblai manuel	m^3	3	10	30		
2.2	Remblai manuel avec compactage	m ³	1	12	12		
3	BETON						
3.1	Béton de propreté dosé à 150kg/m³	m ³	0,2	250	50		
3.2	Béton armé dosé à 350kg/m³ pour radier	m ³	0,45	670	301,5		
3.3	Béton armé dosé à 350kg/m³ pour voiles	m ³	0,72	670	482,4		
3.4	Béton armé dosé à 350kg/m³ pour sommier	m^3	0,21	670	140,7		
3.5	Béton armé dosé à 400kg/m³ pour dalle amovibles	m^3	0,26	720	187,2		
TOTAL GENERAL AU METRE LINEAIRE SANS TAXES					1354		

CONCLUSION

L'un des enjeux majeurs de la ville d'aujourd'hui est La gestion des eaux pluviales. Cette problématique ne cesse de croître et cela exige d'autant plus d'attention que toutes les autres qui pèsent sur les villes du tiers monde.

Avec cette démarche scientifique nous avons apporté des éléments de connaissance et de réponse dans une perspective plus large liés aux travaux d'assainissement concernant le dimensionnement du collecteur d'eau pour l'assainissement du site abritant les bâtiments administratifs entre autre OFIDA et DGDA, de royal à Kinshasa – Gombe.

Retenons que la topographie est un élément capital pour les travaux de drainage des eaux de ruissellement et que le site en étude est dépourvu d'une pente nécessaire pouvant assurer le drainage de ces dernières. Néanmoins, nous avons mis en place des techniques qui nous ont permis non seulement de dimensionner (Avec comme dimension de l'ouvrage:B = 0.90m; H = 1.20m sur une longueur totale de 465,79 m) mais aussi de s'assurer que les eaux recueillies dans le collecteur puisse être évacuée vers un exutoire (avec une vitesse d'écoulement de $V_h = 3.647 \text{ m/s}$).

La construction, le bon fonctionnement ainsi que l'entretien de cet ouvrage sera un moyen très efficace pour résoudre les problèmes de drainage des eaux de ruissellement que connait le site royal dans la commune de Gombe dans la ville de Kinshasa.

BIBLIOGRAPHIE

- [1]. REGIS BOURRIER, MARC SATIN, BECHIR SELMI: Guide technique de l'assainissement (Collecte, épuration, conception, exploitation);
- [2]. GOMELLA et BALLETTE : Pratique de l'assainissement des agglomérations urbaines et rurales ;
- [3]. S.M.U.H: Manuel d'assainissement en Afrique;
- [4]. La COLLECTION: TOME 1: l'assainissement dans les agglomérations urbaines et rurales;
- [5]. H. GUERREE; C. GOMELLA; B. BALETTE; L. Coin: Pratique de l'assainissement des agglomérations urbaines et rurales;
- [6]. RÉFÉRENTIEL Conception et gestion des ouvrages d'assainissement ;
- [7]. Julien Gabert (coordination scientifique): MÉMENTO DE L'ASSAINISSEMENT: Mettre en œuvre un service d'assainissement complet, durable et adapté.

Vol. 47 No. 2 November 2024 ISSN: 2509-0119 593