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Abstract—Empirical kinetic models have been successfully applied to describe the anaerobic co-digestion kinetics of canna rhizome and 
cow manure for biogas production. A diverse range of models were fitted to experimental data collected from batch assays at various 
ratios. To select the most appropriate model for each ratio, the statistical metrics R² and RMSE were employed. Among all the models 
evaluated, the Weibull model demonstrated superior performance in predicting kinetic parameters across all ratios, exhibiting the highest 
R² value (0.9988) and the lowest RMSE (0.9746) at the optimal ratio of 50  :50:200. The results obtained demonstrate that the co-digestion 
of these substrates is a promising pathway for bioenergy production, while valorizing agricultural residues. This study opens up interesting 
perspectives for the optimization of co-digestion processes and the energy transition. 
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I. INTRODUCTION 

The growing global energy crisis has sparked an incessant search for sustainable and renewable energy solutions. In this context, 
biogas, a clean and renewable fuel produced through anaerobic digestion of organic matter, represents a promising solution to reduce 
our dependence on fossil fuels [1]. However, the efficiency of biogas production is strongly influenced by the specific characteristics 
of the organic substrates used [9]. 

Our study focuses on the co-digestion of Canna indica rhizomes and cow manure, two readily available agricultural residues. 
Canna indica, a versatile tropical plant, has garnered attention for its potential as a feedstock for biogas production [10]. Cow manure, 
a ubiquitous by-product of livestock farming, is also recognized for its biogas production capabilities [14]. By combining these 
substrates, the co-digestion process is expected to enhance biogas yield, improve substrate digestibility, and optimize nutrient 
utilization [8]. 

In a previous study, we investigated the co-digestion potential of Canna indica rhizomes and cow manure, employing an existing 
mathematical model tailored to our system [17]. Building upon these initial findings, we delved deeper into our analysis by applying 
nine different empirical models, including Gompertz, Modified Gompertz, Logistic, Modified Logistic, Richards, First Order, 
Transference, Cone, and Weibull, to our experimental data. This multi-model approach enables us to obtain a more precise and 
detailed description of biogas production kinetics and to identify the most suitable model for our system ([4], [6], [12], [13], [18], 
[19], [21], [22], [23]). 

Each of these models presents specific advantages and limitations. For instance, the Gompertz model, a classic approach that 
describes the cumulative biogas production over time, has been successfully applied in numerous studies but may not always capture 
the complexity of real-world data, particularly when dealing with substrates exhibiting non-standard growth patterns. The Logistic 
and Modified Logistic models are also commonly used to describe the sigmoidal shape of biogas production curves, but they may 
underestimate biogas yield when substrate digestibility is highly variable. The Richards model offers increased flexibility, allowing 
for asymmetric growth patterns, while the First Order model, although simple, often fails to capture the initial lag phase and 
subsequent exponential growth phase observed in many biogas production processes. 

This comprehensive modeling approach will allow us to accurately predict biogas yields and extract critical kinetic parameters. 
The results of this study not only illuminate the feasibility and efficiency of co-digesting Canna indica rhizomes and cow manure but 
also contribute to a deeper understanding of the factors influencing biogas production kinetics ([2], [3], [7]). By identifying the optimal 
substrate ratio and the most appropriate kinetic model, this research provides valuable insights for the design, operation, and 
optimization of biogas facilities using agricultural residues ([13], [15]). 
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In conclusion, our study aims to optimize biogas production from common agricultural residues, improve the understanding of 
factors influencing biogas production kinetics, and provide crucial data for the design and optimization of biogas facilities. Ultimately, 
our results support the transition towards a more sustainable and secure energy future ([5], [16], [20]) contributing to global efforts 
to develop renewable energy solutions and reduce our dependence on fossil fuels. 

II. MATERIALS AND METHODS 

A. Feedstocks 

 Canna indica Rhizome : 
o The Canna indica rhizomes were sourced from Ambohitra village, located in the Andramasina district of 

Madagascar. 
o The rhizomes underwent washing and grinding. 

 Cow Manure : 
o The cow manure was obtained from a local farm. 
o Pretreatment involved sieving and homogenizing the manure. 

B. Co-digestion Methodology 

 Substrate Mixtures: Canna indica rhizome and cow manure were combined in various ratios (Canna Rhizome RC: Cow 
Manure CM: Eau W) based on dry mass. The following ratios were used:  (100:0:100), (100:0:200), (25:75:200) and 
(50:50:200) 

 Anaerobic digestion occurred under mesophilic conditions (25-32°C) with a retention time ranging from 22 to 29 days.  

C. Measurement 

 Biogas production was quantified using the displacement method.  
 Biogas production, composition, temperature, and pH of the reaction medium were monitored continuously throughout the 

study. 

D. Kinetic Model : Models Description 

To model biogas production, we selected nine commonly used kinetic models: Gompertz, Gompertz modified, Logistic, 
Modified Logistic, Richards, First-Order, Transference, Cone and Weibull. These mathematical models allow us to simulate and 
predict the time-dependent evolution of biogas production based on simplified assumptions of the underlying biological mechanisms 
of anaerobic codigestion.  

 
Table I. Empirical-Kinetic models for Anaerobic Digestion tested in this work 

Model Name Model Equation  
Gompertz  

 

𝐵(𝑡) is the biogas production at time t; 𝐵଴ is the asymptotic level of biogas 
production, representing the maximum production capacity; 𝐾ீ is the growth 
rate parameter, Ti is the inflection time parameter 

Modified Gompertz 

 

𝐵(𝑡)is cumulative biogas production (L); 𝐵଴ is the biogas production potential 
(L); 𝑅௠௔௫ is the maximum biogas production rate (L/day) and 𝜆 is the duration 
of lag phase (day) 

Logistic 

 

The parameters have the same meaning as defined previously in Modified 
Gompertz model. 

Modified Logistic 

 

B(t) represents the cumulative biogas production at time t, 𝑩𝟎 is the maximum 
achievable biogas production, C is a constant related to initial conditions, k is 
the specific growth rate. 

Richards 

 

𝐵(𝑡) represents the cumulative biogas production at time t, 𝐵଴ is the maximum 
achievable biogas production, 𝐶 is a constant related to initial conditions, k is 
the specific growth rate, and θ is a shape parameter(θ = 1 simplifies to the 
logistic model; θ < 1 for slower initial growth, faster later; θ > 1 for faster 
initial, slower later growth). 

First Order  𝐵 is the cumulative biogas yield at time t (L); 𝐵଴ is the methane potential of the 
substrate (L); k is the first-order biogas production rate constant (day–1); t is 
digestion time (days). 

Transference 

 

The parameters have the same meaning as defined previously in Modified 
Gompertz model. 

Cone 

 

𝐵(𝑡)is cumulative biogas production (L); 𝐵଴ is the biogas production potential 
(L); k--A rate constant that determines how quickly biogas production reaches 
its maximum (day-1); n- the shape of the biogas production curve.. 

Weibull 

 

𝐵(𝑡) is the cumulative biogas production at time t, b1 is initial biogas 
production rate. b2 is the  maximum biogas production capacity, b3 is the rate 
of biogas production increase and b4 is shape parameter for the production 
curve. 
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E. Fitting and validation of kinetic models 

To identify the optimal parameters of the kinetic models, a non-linear least squares optimization procedure [11] was implemented 
in MATLAB. This procedure aimed to minimize the difference between the predicted cumulative biogas production values from 
the models and the experimentally observed values. Once the parameters were optimized, the models' ability to accurately describe 
the biodegradation process was evaluated using a set of statistical criteria, including the coefficient of determination (R²) and root 
mean square error (RMSE). 

 

III. RESULTATS AND DISCUSSION 

A. Biogaz Production Curves 

Figures 1-9 illustrate the evolution of cumulative biogas production over time for different substrate ratios (100:0:100, 100:0:200, 
25:75:200, 50:50:200) at various hydraulic retention times. This analysis helps to identify both the optimal ratio for maximizing 
biogas production and the best-fitting model that accurately describes the experimental data. 

 
Fig.1. Gompertz model fitting for biogas production with varying substrate ratios 
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Fig.2. Modified Gompertz Model Fit for Biogas Production: Substrate Ratio Impact 

 
Fig.3. Fitting the Logistic Model to Biogas Production Data with Varying Substrate Compositions 
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Fig.4. Modified Logistic  Model: A Fitting Approach for Biogas Production with Diverse Substrate Ratios 
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Fig.5. Fitting Biogas Production Data to the Richards Model with Varied Substrate Ratios 
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Fig.6. Impact of Substrate Ratios on Biogas Production: A First Order Model Fitting 
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Fig.7. Impact of Substrate Ratios on Biogas Production: A transference Model fitting 
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Fig. 8. Fitting the Cone Model to Biogas Production Data with Varying Substrate Compositions 

 

 
 

Fig. 9. Weibull Model: A Fitting Approach for Biogas Production with Diverse Substrate Ratios 
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In-depth analysis of the fitting curves reveals distinct behaviors depending on the models and substrate ratios. 
 First Order model: Curves are nearly linear for all ratios, suggesting a relatively simple and stable biogas production 

kinetics. 
 Cone and Weibull models :  

o Linearity for ratios 100:0:100, 100:0:200, and 25:75:200: these ratios induce nearly linear fitting curves, 
regardless of the model, indicating rapid degradation of dominant substrates without a significant lag phase. 

o Flattened S-shaped curve for ratio 50:50:200: This specific ratio induces a flattened S-shaped curve for Cone and 
Weibull models, suggesting a more complex kinetics, potentially due to substrate synergies, inhibitors, or shifts 
in microbial community. 

 Other 6 models (Gompertz, Modified Gompertz, Logistic, Modified Logistic, Richards and Transference): For all ratios 
and remaining models, curves adopt a typical S-shape, characterized by an initial slow phase, followed by an exponential 
phase and a stationary phase. This classic S-shape is characteristic of microbial growth process. 
 

A combination of factors influences biogas production kinetics. Substrate ratios modify organic matter composition and reaction 
conditions, while substrate heterogeneity adds complexity to the degradation process, affecting the shape of the fitted curves.  

All models demonstrated strong alignment with the observed data across various substrate ratios, confirming their accuracy in 
predicting cumulative biogas production over time. 
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B. Analysis comparison 
Table II. Kinetic parameter optimization and optimal ratio identification for anaerobic codigestion: a comparative model study 

 
M. Gompertz: Modified Gompertz; M. Logistic: Modified logistic           
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The research focuses on two key aspects: identifying the most suitable mathematical approach and determining the optimal substrate 
ratio. Four different proportions of rhizome, cow manure, and water were tested. By comparing various analytical models, the study 
seeks to identify the most effective predictive tool and its associated kinetic parameters, crucial for understanding and forecasting 
system performance. 

 
1. General trends and results common to all models 

The results obtained confirmed several trends common to all models: 
 Dilution effect: The dilution rate had a significant impact on biogas production. 
 Interest of the 100:0:200 ratio: The ratio composed solely of Canna indica rhizome and water (100:0:200) proved to be 

a valuable reference point for comparing other mixtures. 
 Positive effect of cow manure and synergy: The addition of cow manure had a positive effect on biogas production, 

suggesting a synergy between the two substrates, for the 25:75:200 and 50:50:200 ratios. 
 Optimal ratio: The 50:50:200 ratio (50% rhizome, 50% cow manure, and 200% water) was identified as the optimal 

ratio  for the anaerobic co-digestion studied. 
 Quality of fits: The models showed an excellent ability to predict biogas production, with R² greater than 0.98 in all 

cases. The RMSE were also low, ranging from 0.9746 to 2.9448. 
 

2. Quantifying model differences through constant analysis  
 

The figure presents a comprehensive analysis of biogas production for a ratio of 50:50:200, comparing nine different mathematical 
models against observed data. The graph illustrates the cumulative biogas production in liters over a period of 28 days. The observed 
data points are represented by white circles, while the various models are depicted by lines of different colours and styles.

 
Fig. 10 Model fitting: comparison 

Upon examination, we can discern three distinct phases in the biogas production process. The initial lag phase, lasting 
approximately 0-5 days, is characterized by slow biogas production as microorganisms adapt to the substrate. This is followed by 
an exponential phase from roughly day 5 to day 20, where biogas production increases rapidly. The inflection point, indicating the 
maximum rate of production, occurs around days 10-12. Finally, a stationary phase is observed after day 20, where production slows 
and approaches a plateau as easily biodegradable organic matter is depleted. 
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Most models indeed closely follow the trend of the observed data. The Gompertz, Modified Gompertz, Logistic, Modified 
Logistic, Cone and Weibull models show particularly good fits throughout the entire process.  

The Richards model shows a good fit overall but slightly overestimates production in the very early stages (0-5 days) and 
underestimates it slightly in the later stages (after 20 days). 

The First Order model noticeably overestimates production in the early and middle stages (0-15 days) and then underestimates 
it in the later stages. 

The Transference model follows the observed data quite well, with only minor deviations.  
Most models converge satisfactorily with the observed data towards the end of the process, around 25-28 days. 
The graph indicates a final biogas production of approximately 85 liters after 28 days, with the most intense production occurring 

between days 5 and 20. Overall, the models demonstrate good alignment with the observed data, though slight variations are 
noticeable across different phases of the production process. 

 

3. Identification of the best performing mathematical model 

We evaluated each analytical approach using R² and RMSE, selecting the model where the former is close to 1 and the latter is 
minimal, ensuring the best fit between predictions and observed data. 

Regardless of how R² and RMSE were weighted, our analysis consistently identified the Weibull model as the most suitable for 
describing our dataset. 

IV. CONCLUSION 

A comparative analysis of empirical models for biogas production from canna rhizome and cow manure reveals valuable insights 
into their predictive capabilities. 

Among the models evaluated, the Weibull model demonstrated superior performance in predicting kinetic parameters. This 
finding confirms the optimal ratio of 50:50:200 previously identified in our earlier research [17]. This ratio offers a promising 
avenue for further optimization, it would be interesting to delve deeper into variations around this optimal ratio to identify new 
synergies between substrates and further optimize the co-digestion process. 

While the Weibull model excelled under these conditions, it's essential to note that these results are specific to the experimental 
setup. Future research could delve into other kinetic models, such as mechanistic models, and examine additional factors influencing 
biogas production to gain a deeper understanding of the underlying co-digestion mechanisms. Moreover, larger-scale validation is 
necessary to assess the applicability of these findings in real-world conditions. 

Combining canna rhizomes with various organic waste streams, such as brewery grains, coffee grounds, and sewage sludge, or 
different types of manure, in anaerobic co-digestion offers numerous benefits. This approach can enhance biogas production, 
improve digestate quality, stabilize the co-digestion process, and contribute to a more circular economy and a sustainable energy 
future. 
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