© 2024 Scholar AI LLC. https://ijpsat.org/

Vol. 47 No. 1 October 2024, pp. 335-366

Caractérisation Physico-chimique Des eaux De Quelques Ecosystèmes Aquatiques Du Bassin Versant Côtier De La République Démocratique du Congo Dans La Province Du Kongo Central, Territoire De Muanda

[Physico-chemical Characterisation Of The Water In Some Aquatic Ecosystems In The Coastal Catchment Area Of The Democratic Republic of Congo In The Province Of Kongo Central, Muanda territory]

Alfred LUIZI BANGANGA ^{1, 2, 3}, Willy LUSASI SWANA ⁴, Jean – Claude KAMB TSHIJIK ³, Victor PWEMA KIAMFU ⁴ & N.F NYONGOMBE UTSHUDIENYEMA ⁵

- ¹ Section des Technologies et Sciences, Mention Biologie Chimie, Institut Supérieur Pédagogique de Muanda, Kongo Central, République Démocratique du Congo
- ² Section des Techniques de Santé Maritime, Institut Supérieur de Navigation et de Pêche, Muanda, Kongo Central, République Démocratique du Congo
- ³ Département de Biologie, Faculté des Sciences, Université Pédagogique Nationale, B.P. 8815 Kinshasa Ngaliema, RD Congo
 - ⁴ Laboratoire de Limnologie, Hydrobiologie et Aquaculture, Mention Sciences de la Vie, Faculté des Sciences et Technologies, Université de Kinshasa (UNIKIN), B.P 190 Kinshasa XI, RD Congo
- ⁵ Département de Zootechnie et Pisciculture, Faculté des Sciences Agronomiques, Université Pédagogique Nationale, B.P 8815 Kinshasa Ngaliema, RD Congo

* Auteur Correspondant : willy.lusasi@unikin.ac.cd ; +243 813 662 026

Résumé – Les activités anthropiques, principalement l'agriculture et l'exploitation pétrolière, se sont intensifiées ces dernières années dans le bassin versant côtier de la République Démocratique du Congo, plus particulièrement dans le territoire de Muanda, menaçant la diversité biologique de cette zone. Cette étude a pour objectif de déterminer la nature hydrologique ainsi que la qualité physique et chimique de quelques rivières et lagunes du bassin versant côtier de la République Démocratique du Congo dans la province du Kongo Central, territoire de Muanda en vue de mettre en évidence les conditions dans lesquelles sont soumises les ressources halieutiques qui peuplent ces hydrosystèmes. Pour caractériser les habitats prospectés dans les différents sites d'échantillonnage et déterminer les conditions dans lesquelles sont soumises les ressources halieutiques qui peuplent ces écosystèmes dans la zone d'étude, plusieurs paramètres physico-chimiques ont été évalués *in situ* et au laboratoire à travers des analyses appropriées. Les résultats obtenus

ont montré que les cinq écosystèmes aquatiques prospectés ne présentent pas les mêmes caractéristiques hydrologiques, physiques et chimiques et, ces paramètres abiotiques varient en fonction des saisons. Il a été observé que les eaux des Lagunes présentent des caractéristiques hydrologiques et physico-chimiques différentes par rapport aux rivières Ntoto, Kumbi 2, Lunga 1 et Lunga 2. Néanmoins, les caractéristiques abiotiques de ces écosystèmes aquatiques remplissent les conditions abiotiques favorables pour la survie et le maintien des organismes aquatiques dans ce bassin versant côtier. La poursuite des études orientées sur la diversité biologique pourrait traduire clairement l'influence des caractéristiques abiotiques de ces écosystèmes sur la vie aquatique.

Mots-clés - Variation Saisonnière, Qualité Physico-chimique, Bassin Versant Côtier, Muanda, Kongo Central

Abstract – Anthropogenic activities, mainly agriculture and oil exploitation, have intensified in recent years in the coastal watershed of the Democratic Republic of Congo, particularly in the Muanda territory, threatening the biological diversity of this area. The aim of this study is to determine the hydrological nature as well as the physical and chemical quality of a number of rivers and lagoons in the coastal watershed of the Democratic Republic of Congo in the province of Central Kongo, Muanda territory, with a view to highlighting the conditions under which the fishery resources that populate these hydrosystems are subject. In order to characterise the habitats surveyed at the various sampling sites and determine the conditions under which the fishery resources that populate these ecosystems in the study area are subject to, several physico-chemical parameters were assessed in situ and in the laboratory using appropriate analyses. The results showed that the five aquatic ecosystems surveyed do not have the same hydrological, physical and chemical characteristics, and that these abiotic parameters vary according to the season. It has been observed that the waters of the Lagunes have different hydrological and physico-chemical characteristics to those of the Ntoto, Kumbi 2, Lunga 1 and Lunga 2 rivers. Nevertheless, the abiotic characteristics of these aquatic ecosystems provide favourable abiotic conditions for the survival and maintenance of aquatic organisms in this coastal catchment. Further studies focusing on biological diversity could clearly demonstrate the influence of the abiotic characteristics of these ecosystems on aquatic life.

Keywords - Seasonal variation, Physico-chemical quality, Coastal catchment, Muanda, Central Kongo.

1. INTRODUCTION

SSN:2509-0119

Le bassin du fleuve Congo, situé au cœur du continent africain, est le plus important d'Afrique par sa superficie de 3.475.000 km² (Lemoalle, 2006.) dont les 62 % de sa superficie sont situées en République Démocratique du Congo (RD Congo). Le cours du fleuve Congo et l'ensemble de son bassin sont répartis en trois portions hydrographiques principales (Roberts et Stewart, 1976; Teugels et Guegan, 1994; Teugels et Thienne, 2005) dont le Haut Congo, le Congo Central et le Bas-Congo.

Cependant, à côté de ce grand bassin, le second du monde après le bassin de l'Amazone, la République Démocratique du Congo possède trois autres bassins de moindre importance par leurs superficies mais de haute importance stratégique par leur contribution en débit et par la richesse de leurs écosystèmes aquatiques et terrestres. Il s'agit : (1) du bassin versant du Semuliki, (2) le bassin versant du Fleuve Chiloango et (3) le bassin versant côtier de la RD Congo (le plus petit bassin, qui draine le réseau hydrographique de l'extrême Ouest de la RD Congo, dans la région Nord du Territoire de Muanda, faisant frontière avec l'Enclave de Cabinda) (Lemoalle, 2006). Par ailleurs, les eaux et les ressources halieutiques de ce dernier n'aurait pas fait l'objet d'études hormis celle de Luizi *et al.* (2024), la plupart des travaux ont été orientés dans d'autres écosystèmes aquatiques.

En effet, la plupart des activités humaines notamment : l'agriculture, la production de déchets résidentiels, les industriels minières et pétrolières, le déversement des eaux usées, des métaux lourds et des particules dans les sols environnants peuvent avoir un impact significatif sur non seulement la qualité de l'eau mais aussi la durabilité des ressources en eau et, on considère souvent que ces activités anthropiques sont une source majeure de la dégradation de l'environnement (Omanović *et al.*, 2015) tout en entrainant des risques de contamination et/ou de pollution des eaux (Yao et Ahoussi, 2020).

Les activités anthropiques principalement l'agriculture et l'exploitation pétrolière se sont intensifiées ces dernières années dans le bassin versant côtier de la RD Congo plus exactement dans le territoire de Muanda, menaçant la diversité biologique de cette zone. En plus, cette région connaît actuellement une forte croissance démographique suite à la mise en place

des industries qui s'y installent causant ainsi la formation d'importants groupements humains, avec effets évidents sur la pression l'environnement notamment les rivières.

Ainsi, il est donc nécessaire qu'une évaluation qualitative des eaux des écosystèmes aquatiques qui constituent le bassin versant côtier de la République Démocratique du Congo soit faite afin de suivre l'évolution des paramètres hydrologiques, physiques et chimiques pour la préservation de la santé de ces écosystèmes et leurs ressources. C'est dans cette optique que s'inscrit la présente étude qui a pour objectif de déterminer la nature hydrologique ainsi que la qualité physique et chimique de quelques rivières et lagunes du bassin versant côtier de la République Démocratique du Congo dans la province du Kongo Central, territoire de Muanda en vue de mettre en évidence les conditions dans lesquelles sont soumises les ressources halieutiques qui peuplent ces hydrosystèmes.

2. MATERIEL ET METHODES

https://ijpsat.org/

SSN:2509-0119

2.1. Milieu d'étude

L'étude a eu lieu dans quatre (4) rivières (Kumbi 2, Lunga 1, Lunga 2, Ntoto) ainsi que les lagunes (figure 1) du bassin côtier de la République Démocratique du Congo, dans la province du Kongo Central, dans le territoire de Muanda.

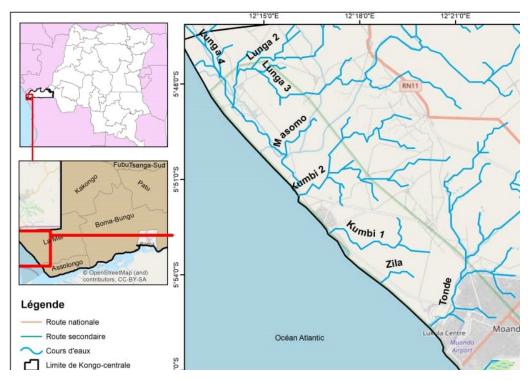


Figure 1 : Cartographie du territoire de Muanda en RD Congo reprenant les sites d'étude prospectés dans le cadre de cette étude

La zone littorale de Muanda débute à l'Ouest par une façade atlantique présentant un linéaire côtier d'environ 40 Km orienté au NO-SE, entrecoupée par des falaises (Luizi et al., 2024). Elle s'étend jusqu'à près de la ville portuaire de Matadi à l'Est et fait frontière avec le district du Bas-Fleuve au Nord-Est. Du point de vue géographique, elle est bornée (Luizi et al., 2024):

- A l'Est par le territoire de Seke Banza. C'est dans cette direction qu'on trouve la ville de Boma qui est, en fait, incluse totalement dans le territoire de Muanda;
- A l'Ouest par l'Océan Atlantique;

- Au Nord par l'Enclave de Cabinda et le Territoire de Lukula et
- Au Sud par la province angolaise de Zaïre dont la ville la plus importante est la ville éclairée Soyo de la république d'Angola, séparée de la RD Congo par le majestueux fleuve Congo.

Le climat de cette zone appartient entièrement au type Aw₄₋₅ de la classification de Köppen avec de la saison de pluies et de la saison sèche bien marquées. La saison de pluie dure 7 à 8 mois, période pendant laquelle on remarque une augmentation sensible de température (Luizi *et al.*, 2024). La saison sèche dure 4 à 5 mois, période de pendant laquelle on remarque une nette baisse de température. La figure 2 ci-après reprend la courbe ombrothermique sur la variation de la variation de la température et la pluviosité entre les mois de janvier et décembre 2023.

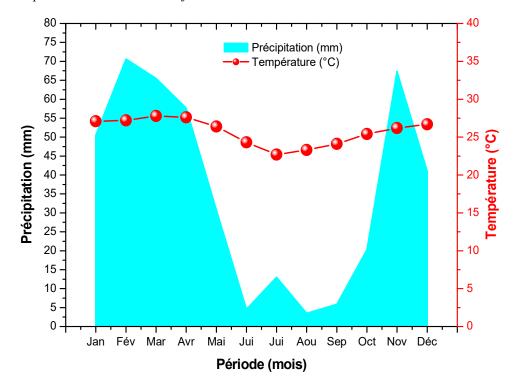


Figure 2 : Variation de la température (°C) et précipitations (mm) dans la zone de Muanda entre janvier et décembre 2023

Bien que le littoral puisse appartenir au type Aw₄₋₅, la tendance climatique qui se dessine est du type de climat plus chaud à caractère steppique (climat océanique, dû à la pluviométrie plus faible pendant que le reste de la province est soumis au climat tropical humide (Makanzu, 2021).

2.2. Méthodologie

SSN:2509-0119

2.2.1. Caractérisation physico-chimiques des eaux des écosystèmes aquatiques étudiés

La caractérisation hydrologique, physique et chimique des hydrosystèmes (figure 3) étudiés a été réalisée pendant une période de dix (10) mois allant des mois de juillet 2022 au mois d'avril 2023 ; répartis en deux périodes suivantes :

- a) La première période de trois (3) mois allant de juillet à septembre 2022;
- b) La deuxième période de sept (7) mois allant d'octobre 2022 à avril 2023.

Figure 3 : Photos des différents écosystèmes aquatiques prospectés dans le cadre de cette étude (photos Luizi B.A et Lusasi S.W., 2023)

Pour caractériser les habitats prospectés dans les différents sites d'échantillonnage et déterminer les conditions dans lesquelles sont soumises les ressources halieutiques qui peuplent ces écosystèmes de la zone d'étude, plusieurs paramètres physico-chimiques ont été évalués. Pour les paramètres physiques, il s'agit notamment de la température (°C), la turbidité (UNT), la conductivité (µS/cm), le potentiel d'hydrogène (pH), le pouvoir redox (m.V), la saturation en oxygène dissous (%) et l'oxygène dissous (mg/l) qui ont été prélevés à l'aide de la sonde multiparamètres de marque KAORTON. La profondeur a été prélevée *in situ* à l'aide d'un mètre cane et la transparence a été évaluée avec un disque de Secchi. Le prélèvement de ces paramètres a été fait dix (10) fois sur chaque site d'échantillonnage pendant la saison sèche comme la saison des pluies.

Pour les analyses chimiques, les échantillons d'eaux ont été prélevés dans chaque rivière et lagune prospectées, conservés dans des flacons en polyéthylène avant d'être gardés au froid dans une glacière pour être ramenés au laboratoire pour les analyses appropriées. Au total, sept (7) paramètres chimiques notamment : la dureté totale (mg/L), le magnésium (mg/l), le nitrite (mg/L), l'ammonium (mg/L), le nitrate (mg/L), la demande chimique en oxygène (mg/L) et la demande biologique en oxygène (mg/L) ont été analysés au Laboratoire de Physique des sols et d'Hydrologie du Commissariat Général à l'Energie du Centre Régional d'Etudes Nucléaires de Kinshasa (CGEA/CREN-K) à l'aide d'un spectromètre ED-XRF Xepos III assisté par ordinateur et un spectrophotomètre (UV) de marque HACH DR/2400. La dureté totale d'une eau, encore appelée TH (titre hydrotimétrique), représente sa teneur en ions calcium et magnésium. Elle a été déterminée par la formule empirique ciaprès : **Dureté = 2,497*Ca + 4,118*Mg.**

2.2.2. Etude granulométrique du substrat de fond

SSN:2509-0119

Le substrat de fond était récolté dans chaque site d'échantillonnage, conservé dans des sacs plastiques puis ramené au Laboratoire de Physique des Sols et d'Hydrologie du Commissariat Général à l'Energie du Centre Régional d'Etudes Nucléaires de Kinshasa (CGEA/CREN-K) pour l'analyse de la taille des particules selon la méthode Pauwels (Mulaji *et al.*, 2016).

Au laboratoire, 1 kilogramme des échantillons de substrat de fond de chaque site a été séché à l'étuve (marque Memmert) à 30 °C pendant 24 heures puis tamisés mécaniquement à partir de différents troncs. La quantité retenue sur chaque tamis a été pesée sur une balance analytique de précision de 0,001 g (Orhus®). Le substrat de fond aux sites d'étude a été déterminé en pourcentage de la surface totale couverte par chaque type de substrat en rapport avec la surface totale du reste des autres types de substrats.

2.2.3. Analyse de classification hiérarchique ascendante

Les analyses de regroupements, encore appelés analyses de classification ou « cluster analysis » en anglais sont réalisées pour regrouper les entités écologiques ou unités d'échantillonnage ayant des caractéristiques similaires à une variable donnée (Luizi *et al.*, 2024). Elles sont basées sur la mesure des distances des similitudes entre les entités écologiques étudiées (Piélou, 1984).

Dans le cadre de la présente étude, ces analyses ont permis de regrouper les rivières et lagunes en vue de déceler leur affinité sur la qualité physico-chimiques des eaux. Ainsi, l'analyse a été faite en fonction des concentrations moyennes des paramètres hydrologiques, physiques et chimiques de différentes rivières et lagunes.

2.2.4. Traitement et analyses statistiques des données

Les données obtenues des différentes analyses ont été encodées sur une base des données créée avec le logiciel Excel 2013. Ensuite, les moyennes et les écart-types des paramètres hydrologiques, physiques et chimiques ont été calculés avec le même logiciel précité. Pour relever la différence de la variation entre les valeurs moyennes des paramètres hydrologiques et physico-chimiques, l'analyse de la variance à un facteur de classification (ANOVA 1) (Scherrer, 1984) accompagnée du LSD (Least Significant Difference) test de Fisher (Saville, 1990) a été utilisée à l'intervalle de 95% de confiance grâce au logiciel Statistix version 8.

Les résultats obtenus après les traitements des données sont présentés sous forme des tableaux, graphiques et figures. Le logiciel Origin 6.1 a été utilisé pour dresser les graphiques en histogrammes sur la variation des paramètres hydrologiques et physico-chimiques. Le logiciel Past (Paleontological Statistics, version 2.16) a été utilisé pour dresser les graphiques des analyses de classification hiérarchique ascendante. La cartographie de la zone d'étude a été élaborée avec le logiciel QGIS.

3. RESULTATS

SSN:2509-0119

https://ijpsat.org/

3.1. Paramètres hydrologiques : profondeur (m)

L'observation des résultats de la profondeur de la colonne d'eau de surface de cinq (5) écosystèmes aquatiques prospectés consignés dans la figure 4 révèle une variation saisonnière où les rivières et lagunes restent plus profondes pendant la saison des pluies que pendant la saison sèche.

Pendant la saison de pluies, la figure susmentionnée montre également que la profondeur la plus élevée est obtenue dans les rivières Lunga 2 (profondeur moyenne = 5.11 ± 0.31 m) et Lunga 1 (profondeur moyenne = 4.57 ± 0.46 m). Les rivières Kumbi 2 (0.88 ± 0.156 m) et Ntoto (0.69 ± 0.09 m) ainsi que les lagunes (0.89 ± 0.18 m) sont moins profondes pendant la même saison. L'analyse de la variance appliquée aux données de ce paramètre révèle une différence très hautement significative (F = 389; p = 0.0000); la valeur critique du test de LSD est égal à 0.3196. Classés par ordre décroissant, en rapport à la profondeur de la colonne d'eau de surface des hydrosystèmes sous étude, pendant la saison pluvieuse, ces derniers se rangent de la manière suivante : Lunga 2 (5.11 ± 0.31 m) > Lunga 1 (4.57 ± 0.46 m) > Lagunes (0.89 ± 0.18 m) > Kumbi 2 (0.88 ± 0.15 m) > Ntoto (0.69 ± 0.09 m).

Pendant la saison sèche, les rivières Lunga 2 (profondeur moyenne = $2,33\pm0,62$ m) et Lunga 1 (profondeur moyenne = $2,08\pm0,42$ m) restent toujours les plus profondes avec une différence très hautement significative (F = 32,6; p = 0,0000; LSD = 0,4201) que les trois autres hydrosystèmes sous étude.

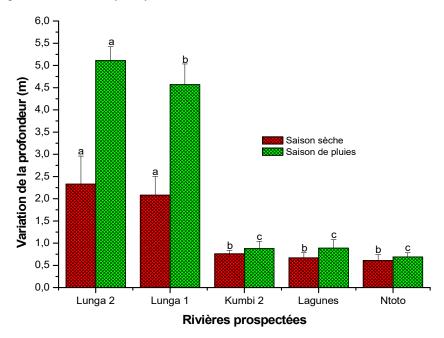
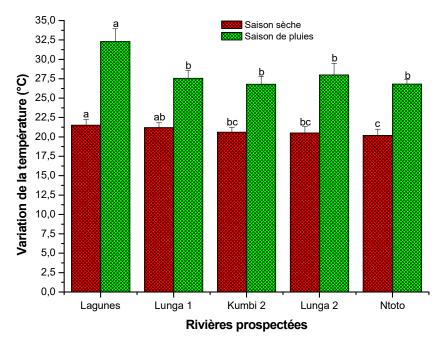


Figure 4 : Variation de la profondeur de la colonne d'eau de surface des rivières et lagunes prospectées pendant la saison sèche (de juillet à septembre 2022) et pendant la saison des pluies (d'octobre 2022 à avril 2023), dans le bassin versant côtier de la RD Congo, province du Kongo Central territoire de Muanda


SSN:2509-0119

https://ijpsat.org/

3.2.1. Variation de la température (°C)

De manière générale, les eaux de différents écosystèmes aquatiques prospectées restent chaudes pendant les deux saisons mais avec des pics prononcés pendant la saison de pluies. Plus particulièrement, sur la figure 5, on note les observations suivantes :

- Pendant la saison pluvieuse, les valeurs moyennes les plus élevées de la température se manifestent dans les lagunes (avec une température moyenne de 32,28±1,66 °C) suivies des rivières Lunga 1 (27,91±1,03 °C), Lunga 2 (27,90±1,5 °C) et de Ntoto (26,80±0,6 °C). La rivière Kumbi 2 (26,79±1,01 °C) reste la moins chaude pendant cette période. La différence dégagée est très hautement significative (F= 19,7; p=0,0000; LSD=1,4703). Classés par ordre décroissant, les écosystèmes aquatiques étudiés se rangent de la manière suivante : Lagunes (32,28±1,66 °C) > Lunga 1 (27,91±1,03 °C) > Lunga 2 (27,90±1,5 °C) > Ntoto (26,80±0,6 °C) > Kumbi 2 (26,79±1,01 °C);
- Pendant la saison sèche, la figure 3.2 indique que les températures des eaux observées sont presque égales pour tous les sites observés avec celles des lagunes qui sont plus élevées (22,20±0,74 °C). La différence statistique calculée est hautement significative (F = 3,50; p = 0,00142; LSD = 0,8123). Le classement par ordre décroissant de nos milieux aquatiques sous étude, en rapport avec la température des eaux, pendant la saison sèche, est le suivant: Lagunes (22,20±0,74 °C) > Lunga 1 (21,89±0,63 °C) > Kumbi 2 (21,17±0,65 °C) > Lunga 2 (21,02±0,82 °C) > Ntoto (20,66±0,79 °C).

Figure 5 : Variation de la température d'eau de surface des rivières et lagunes prospectées pendant la saison sèche (de juillet à septembre 2022) et pendant la saison des pluies (d'octobre 2022 à avril 2023), dans le bassin versant côtier de la RD Congo, province du Kongo Central, territoire de Muanda

3.2.2. Variation de la transparence (m)

https://ijpsat.org/

SSN:2509-0119

Les résultats de la transparence des eaux de surface de cinq (5) milieux aquatiques prospectés, illustrés dans la figure 6 révèlent globalement une variation saisonnière où les rivières sont plus transparentes pendant la saison sèche que pendant la saison pluvieuse. L'observation minutieuse de la figure su- mentionnée précise que :

- Pendant la saison sèche, les rivières Ntoto (avec une transparence moyenne de 0,67±0,11 m) et Kumbi 2 (avec une transparence moyenne de 0,49 ± 0,074 m) sont plus transparentes que les lagunes (0,37±0,07 m) et les rivières Lunga 2 et 1 avec les valeurs moyennes de transparence respectives de 0,31±0,07 m et 0,3±0,06 m. L'analyse de la variance appliquée à ce paramètre révèle une différence très hautement significative (F = 27,3; p = 0,0000) entre les valeurs moyennes relevées dans chaque milieu aquatique étudié et une valeur critique de LSD = 0,895. L'ordre décroissant de ces hydrosystèmes étudiés, en rapport avec la transparence, rélevée pendant la saison sèche est : Ntoto (0,67±0,11 m) > Kumbi 2 (0,49±0,07 m) > Lagunes (0,37±0,07m) > Lunga 2 (0,31±0,07 m) > Lunga 1 (0,3±0,06 m).
- Pendant la saison des pluies, la même observation est constatée. La figure 3.3 révèle que la rivière Ntoto reste toujours plus transparente avec la valeur moyenne de 0,6±0,1 m que les milieux aquatiques sous examen. La différence de l'analyse de la variance est très hautement significative (F = 14,9 ; p = 0,000 ; LSD = 0,0918). L'ordre décroissant constaté en observant la figure 3.3 est le suivant : Ntoto (0,6±0,1 m) > Kumbi 2 (0,47±0,09 m) > Lagunes (0,35±0,06 m) > Lunga 2 (0,33±0,07 m) > Lunga 1 (0,26±0,06 m).

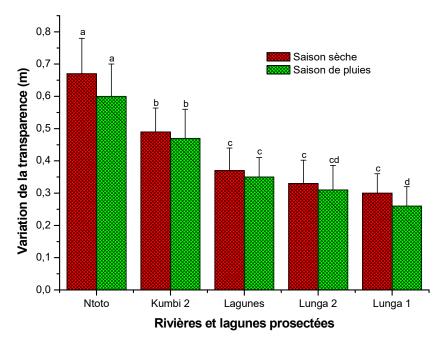


Figure 6 : Variation de la transparence d'eau de surface des rivières et lagunes prospectées pendant la saison sèche (de juillet à septembre 2022) et pendant la saison des pluies (d'octobre 2022 à avril 2023), dans le bassin versant côtier de la RD Congo, province du Kongo Central, territoire de Muanda

3.2.3. Variation de la turbidité (UNT)

De manière générale, la figure 7 montre que les eaux de surface de différents hydrosystèmes sous-évaluation sont moins concentrées en matières solides en suspension pendant la saison sèche que la saison des pluies sauf dans les Lagunes. En outre, elle nous montre que :

https://ijpsat.org/

SSN:2509-0119

Vol. 47 No. 1 October 2024, pp. 335-366

- Pendant la saison des pluies, les lagunes (804,21±34,38 UNT) présentent la turbidité la plus élevée suivies des rivières Lunga 1 (73,18±4,5 UNT) et Lunga 2 (68,47±5,64 UNT). Les faibles turbidités c'est-à-dire les moins concentrées en solides dissous sont constatées dans les rivières Kumbi 2 (28,8±3,24 UNT) et Ntoto (6,37±0,73 UNT). La différence de l'analyse de la variance des valeurs moyennes de ce paramètre est très hautement significative (F = 120; p = 0,0000; LSD = 87,537). Rangés par ordre décroissant, en rapport avec la turbudité, en saison des pluies, les écosystèmes sous études se classent de façon suivante : Lagunes (804,21±34,38 UNT) > Lunga 1 (73,18±4,5 UNT) > Lunga 2 (68,47±5,64 UNT) > Kumbi 2 (28,8±3,24 UNT) > Ntoto (6,37±0,73 UNT).
- Pendant la saison sèche, la même tendance s'observe également. La figure 3.4 renseigne que les valeurs moyennes les moins élevées de la turbidité sont observées respectivement dans les rivières Ntoto (5,54±0,6 UNT) et Kumbi 2 (18,29±0,62 UNT). L'analyse de la variance dégage une différence très hautement significativ (F = 576; p = 0,0000; LSD = 29,771). Rangés par ordre croissant, en rapport avec la turbidité, en saison sèche, les écosystèmes aquatiques prospectés se succèdent de la manière suivante : Ntoto (5,54±0,6 UNT) < Kumbi 2 (18,29±1,31 UNT) < Lunga 1 (41,46±4,5 UNT) < Lunga 2 (44,87±0,02 UNT) < Lagunes (590,21±62 UNT).

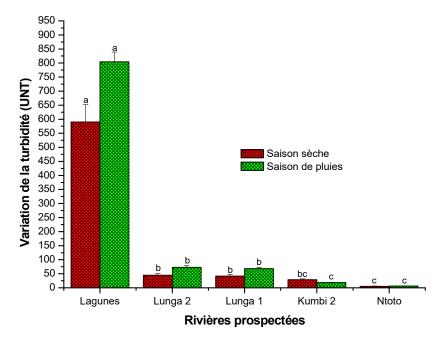


Figure 7: Variation de la turbidité d'eau de surface des rivières et lagunes prospectées pendant la saison sèche (de juillet à septembre 2022) et pendant la saison des pluies (d'octobre 2022 à avril 2023), dans le bassin versant côtier de la RD Congo, province du Kongo Central, territoire de Muanda

3.2.4. Variation de la conductivité

L'examen, de façon générale, de la figure 8 montre que les eaux des différents milieux aquatiques prospectés présentent des taux élevés en ions dissous qui varient selon les saisons (avec une légère augmentation en saison sèche) et selon les écosystèmes aquatiques considérés :

Pendant la saison sèche, les rivières Ntoto (159,49±0,42 μS/cm) et Kumbi 2 (153,67±0,74 μS/cm) présentent des concentrations plus élevées en ions en solution que les autres écosystèmes aquatiques sous étude dont la faible valeur moyenne de conductivité est relevée dans la rivière Lunga 1 (27,64±0,56 μS/cm) avec une différence très hautement significative (F = 13792; p = 0,0000; LSD = 1,3764). D'où le classement par ordre décroissant, en rapport avec ce

https://ijpsat.org/

SSN:2509-0119

Vol. 47 No. 1 October 2024, pp. 335-366

paramètre de ces hydrosystèmes : Ntoto (159,49 \pm 0,42 μ S/cm) > Kumbi 2 (153,67 \pm 0,74 μ S/cm) > Lunga 2 (103,56 \pm 2,48 μ S/cm) > Lagunes (64,89 \pm 1,12 μ S/cm) > Lunga 1 (27,64 \pm 0,56 μ S/cm) ;

Pendant la saison pluvieuse, la même tendance est observée où, les eaux de la rivière Kumbi 2 (151,74±0,81 μS/cm) suivies de celles de la rivière Ntoto (144,67±0,48 μS/cm) sont plus chargées en ions avec une différence très hautement significative (F = 20374; p = 0,0000; LSD = 1,0672) entre les valeurs moyennes de conductivité relevées pendant cette période. L'ordre décroissant de ces écosystèmes prospectés pendant la saison des pluies est: Kumbi 2 (151,74±0,81 μS/cm) > Ntoto (144,67±0,48 μS/cm) > Lunga 2 (100,66±1,1 μS/cm) > Lagunes (63,09±1,12 μS/cm) > Lunga 1 (26,22±0,46 μS/cm).

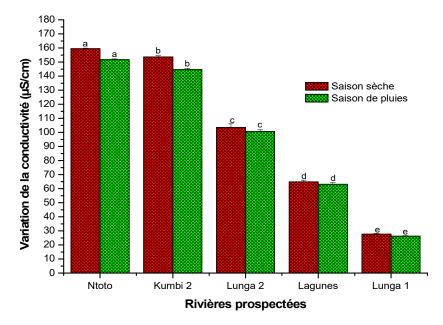


Figure 8 : Variation de la conductivité d'eau de surface des rivières et lagunes prospectées pendant la saison sèche (de juillet à septembre 2022) et pendant la saison des pluies (d'octobre 2022 à avril 2023), dans le bassin versant côtier de la RD Congo, province du Kongo Central, territoire de Muanda

3.2.5. Types de substrat

La variation de la composition des différents types de substrat à travers les sites d'échantillonnages est consignée au tableau 1.

Tableau 1 : Composition (%) des substrats de fond dans les sites d'échantillonnage

Substrats	Ecosystèmes prospectés				
	Kumbi 2	Lunga 1	Lunga 2	Ntoto	Lagunes
Gravier	12	22	3	60	15
Sable	35	15	22	12	55
Sable vaseux	30	18	40	15	7
Vase	5	40	10	10	3
Débris organiques (végétaux)	18	5	25	3	20
Total	100	100	100	100	100

Il ressort des résultats repris au tableau ci-dessus que cinq (5) types de substrats couvre le fond des rivières et lagunes prospectées dans le cadre de cette étude où le sable vaseux, la vase ainsi le sable présentent des proportions en pourcentage de recouvrement les plus élevées que les autres types de substrats. Dans la rivière Kumbi 2, le sable avec 35% suivi de sable vaseux avec 30% occupent la grande proportion du fond. Dans la rivière Lunga 1 par contre, la vase avec 40% ainsi que les graviers (soit 22%) occupent les proportions de recouvrement les plus élevées que dans la rivière Lunga 2 où le sable vaseux avec 40% suivi des débris végétaux avec 25% sont les types de substrats les plus dominants. Le fond de la rivière Ntoto est dominé par le gravier qui occupe 60% et la faible occupation est celle de débris végétaux avec 3%. Le fond des Lagunes est majoritairement occupé par le sable avec 55% ainsi que le sable avec 20%.

3.3. Paramètres chimiques des eaux des cours d'eau prospectés

3.3.1. Variation du potentiel d'hydrogène (pH)

SSN:2509-0119

L'examen de la figure 9 révèle que, de manière générale, les eaux des écosystèmes aquatiques prospectés dans le cadre de cette étude sont acides pendant la saison sèche et de pluies avec des valeurs moyennes plus acides observées pendant la saison des pluies. Il s'observe que :

- Pendant la saison pluvieuse, la rivière Kumbi 2 (pH = 4,56±0,13) et lagunes (pH = 4,67±0,07) ont des valeurs moyennes de pH < à 4,7 et que la rivière Lunga 2 (pH = 4,93±0,46) préente le pH le plus élevé et donc le moins acide de tous les milieux aquatiques considérés avec une différence non significative (F = 1,78 ; p = 0,1494 ; LSD = 0,3421) entre les valeurs moyennes prélevées obtenues. L'ordre décroissant, en rapport avec l'acidité du milieu aquatique prélevée pendant la saison des pluies est : Kumbi 2 (pH = 4,56±0,13) > Lagunes (pH = 4,67±0,07) > Lunga1 (pH = 4,72±0,1) > Ntoto (pH = 4,89±0,53) > Lunga 2 (pH = 4,93±0,46).
- Pendant la saison sèche, la figure 3.6 ci-mentionnée montre que les lagunes sont moins acides que tous les autres milieux aquatiques étudiés. L'analyse de la variance à un facteur appliquée aux données relevées pendant cette saison montre une différence très hautement significative (F = 12,3; p = 0,0000) entre les valeurs moyennes des différents sites de pH proche de la neutralité. La valeur critique du test de LSD (0,3739) montre que les Lagunes (pH = 6,44±0,17) sont moins acides que successivement les rivières Lunga 1 (pH = 6,35±0,47), Lunga 2 (pH = 6,03±0,34), Kumbi 2 (pH = 5,58±0,12) et Ntoto (pH = 5,343±0,2).

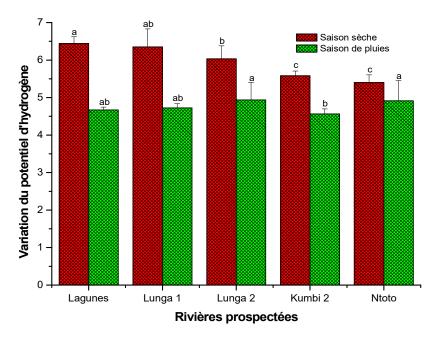


Figure 9: Variation du potentiel d'hydrogène d'eau de surface des rivières et lagunes prospectées pendant la saison sèche (de juillet à septembre 2022) et pendant la saison des pluies (d'octobre 2022 à avril 2023), dans le bassin versant côtier de la RD Congo, province du Kongo Central, territoire de Muanda

3.3.2. Variation du pouvoir rédox

De manière générale, les différents cours d'eaux et lagunes prospectés dans le cadre de cette étude présentent une faible variation saisonnière de leur capacité à pouvoir oxyder les matières organiques contenues dans l'eau avec des valeurs élevées pendant la saison sèche (figure 10). La comparaison multiple des données de ce paramètre relevées pendant la saison sèche met en évidence une différence très hautement significative (F = 51,2; p = 0,0000) entre les valeurs moyennes de différents écosystèmes étudiés. La valeur de LSD test (40,568) révèle que les rivières Ntoto (394,37±7,88 m.V) et Kumbi 2 (358,57±0,42 m.V) présentent des valeurs supérieures à côté de la rivière Lunga 1 (152,77±14,76 m.v) qui présente la plus faible valeur de pouvoir rédox en cette période.

Pendant la saison des pluies, les valeurs les plus prononcées avec une différence très hautement significative (F = 40.5; p = 0.0000; LSD = 47.97) du pouvoir redox sont relevées dans les rivières Ntoto (364.56 ± 7.72 m.V) et Kumbi 2 (333.92 ± 11.29 m.V) et la faible valeur est obtenue dans la rivière Lunga 1 (130.4 ± 15.6 m.V). Classées par ordre décroissant, les milieux aquatiques étudiés se rangent de la manière suivante : Ntoto (364.56 ± 7.72 m.V) > Kumbi 2 (333.92 ± 11.29 m.V) > Lagunes (199.92 ± 58.78 mV) > Lunga 2 (149.6 ± 78.9 mV) > Lunga1 (130.4 ± 15.6 mV).

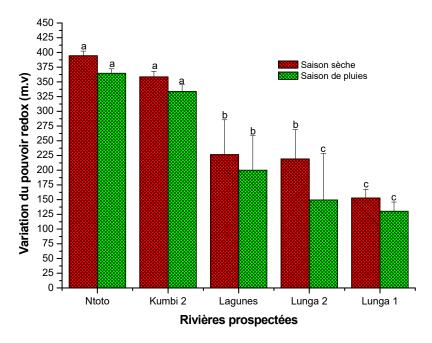


Figure 10 : Pouvoir redox d'eau de surface des rivières et lagunes prospectées pendant la saison sèche (de juillet à septembre 2022) et pendant la saison des pluies (d'octobre 2022 à avril 2023), dans le bassin versant côtier de la RD Congo, province du Kongo Central, territoire de Muanda

3.3.3. Variation de la saturation en oxygène dissous

L'observation de la figure 11 montrant la variation de la saturation en oxygène dissous dans les eaux de cours d'eau et lagunes prospectés révèlent que le changement est saisonnier où de faibles taux moyens de saturation en oxygène sont relevés pendant la saison pluvieuse par rapport à la saison sèche.

Pendant la saison pluvieuse, la figure ci-haut citée fait constater que la rivière Kumbi 2 $(31,23\pm2,55\%)$ accuse une saturation en oxygène plus élevée que tous les autres écosystèmes étudiés et que la rivière Lunga 1 $(16,9\pm8,45\%)$ a le taux de saturation en oxygène le plus faible pendant la même période. Rangés en ordre décroissant en rapport avec ce paramètre, pendant cette saison, les milieux aquatiques prospectés se classent de la manière suivante : Kumbi 2 $(31,23\pm2,55\%)$ > Lunga 2 $(25,46\pm5,87\%)$ > Lagunes $(26,57\pm4,85\%)$ > Ntoto $(21,27\pm0,77\%)$ > Lunga 1 $(16,9\pm8,45\%)$. L'analyse de la variance appliquée aux données de ce paramètre pendant la saison des pluies relève une différence très hautement significative (F=6,01;p=0,0006;LSD=6,3203) entre les valeurs moyennes de saturation en oxygène dissous obtenues dans des différents milieux prospectés.

Pendant la saison sèche, l'examen de la figure 11 montre que les lagunes avec la valeur de saturation en oxygène $38,81\pm1,34\%$ présentent le taux le plus élevé et que la rivière Ntoto a le taux le moins élevé. L'analyse de la variance à un facteur appliquée aux données de ce paramètre relève une différence très hautement significative (F = 6,01 ; p = 0,0006). La valeur critique de comparaison du test de LSD est égale à 6,3203. Le classement des milieux aquatiques prospectés, en rapport avec la saturation en oxygène dissous pendant cette période est : Lagunes $(38,02\pm1,34\%)$ > Kumbi 2 $(37,95\pm0,33\%)$ > Lunga 2 $(36,6\pm0,75\%)$ > Lunga 1 $(32,86\pm1,62\%)$ > Ntoto $(25,61\pm0,49\%)$.

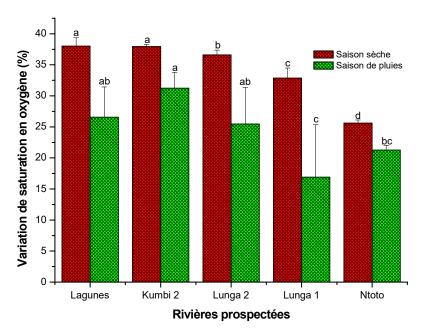


Figure 11 : Illustration de la saturation en oxygène dissous d'eau de surface des rivières et lagunes prospectées pendant la saison sèche (de juillet à septembre 2022) et pendant la saison des pluies (d'octobre 2022 à avril 2023), dans le bassin versant côtier de la RD Congo, province du Kongo Central, territoire de Muanda

3.3.4. Variation de l'oxygène dissous

Il ressort des résultats repris sur la figure 12 ci-dessus que la teneur en oxygène dissous varie d'une rivière à l'autre et d'une saison à l'autre où les taux de dissolution d'oxygène élevés sont plus enregistrés pendant la saison sèche. Scrutée plus particulièrement, la figure ci-dessus présentée révèle que :

- Pendant la saison sèche, tous les écosystèmes prospectés sont riches en oxygène dissous avec les particularités de Lagunes (3,13±0,01 mg/L) et de Kumbi 2 (3,12±0,02 mg/L) qui sont les plus oxygénées que les autres cours d'eaux et la rivière Ntoto contenant moins d'oxygène dissous. La différence est très hautement significative (F = 160; p = 0,0000; LSD = 0,0968). L'ordre décroissant de ces milieux observés, en rapport à ce paramètre, s'établit de la façon suivante : Lagunes (3,13±0,01 mg/L) > Kumbi 2 (3,12±0,02 mg/L) > Lunga 2 (3,01±0,06 mg/L) > Lunga 1 (2,7±0,02 mg/L) > Ntoto (2,11±0,04 mg/L).
- Pendant la saison de pluies, le taux d'oxygène dissous le plus élevé avec une différence très significative (F = 6,01; p = 0,0006; LSD = 0,5210) est relevé dans la rivière Kumbi 2 (2,57±0,21 mg/L) avec une faible teneur dans la rivière Lunga 1 (1,39±0,69 mg/L). Rangés en ordre croissant avec une différence très hautement significative (F = 6,01; p = 0,0006; LSD = 0,5210), en saison des pluies, les hydrosystèmes observés dans le cadre de cette étude se classent de la manière suivante: Lunga 1 (1,39±0,69 mg/L) < Ntoto (1,75±0,06 mg/L) < Lunga 2 (2,1±0,48 m/L) < Lagunes (2,19±0,4 mg/L) < Kumbi 2 (2,57±0,21 mg/L).</p>

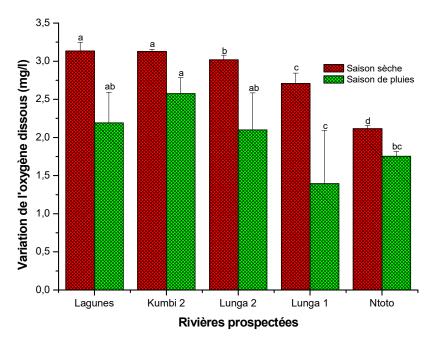


Figure 12: Concentration d'oxygène dissous d'eau de surface des rivières et lagunes prospectées pendant la saison sèche (de juillet à septembre 2022) et pendant la saison des pluies (d'octobre 2022 à avril 2023), dans le bassin versant côtier de la RD Congo, province du Kongo Central, territoire de Muanda

3.3.5. Dureté totale des eaux

La figure 13 montre que, pendant la saison sèche, la rivière Kumbi 2 (15,91 \pm 0,5 mg/L) présente une valeur moyenne de la dureté totale de 19,97 \pm 1,1 mg/L, une concentration plus significativement élevée (F = 14,1; p = 0,0062; LSD = 3,5436) avec une valeur moyenne plus faible relevée dans les eaux de la rivière Ntoto (10,03 \pm 0,05 mg/L). L'ordre décroissant des valeurs moyennes de dureté totale de ces milieux aquatiques observés pendant la saison sèche est le suivant : Kumbi 2 (19,975 \pm 1,1 mg/L) > Lunga2 (14,55 \pm 0,46 mg/L) > Lagunes (14,035 \pm 0,995 mg/L) > Lunga 1 (12,565 \pm 1,525 mg/L) > Ntoto (10,03 \pm 0,05 mg/L).

La même tendance est observée dans la figure 3.10, pendant la saison pluvieuse, où la même situation se répète avec la rivière Kumbi 2 (15,91 \pm 0,5 mg/L) qui présente une valeur moyenne de dureté totale plus significativement élevée (F = 21,25; p = 0,025; LSD = 2,6657), suivie de la rivière Lunga 2 (15,61 \pm 0,54 mg/L) et les lagunes (10,83 \pm 0,43 mg/L). La rivière Lunga 1 (10,84 \pm 1,36 mg/L) possède une valeur moyenne de dureté totale la plus faible. La situation de leur arrangement par ordre décroissant est Kumbi 2 (15,91 \pm 0,5 mg/L) > Lunga 2 (15,61 \pm 0,54 mg/L) > Lunga 1 (10,84 \pm 1,36 mg/L) > Lagunes (10,83 \pm 0,43 mg/L) > Ntoto (8,14 \pm 0,27 mg/L).

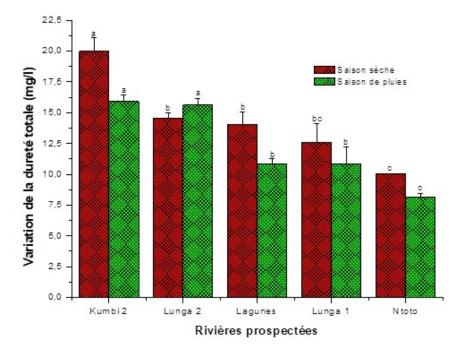
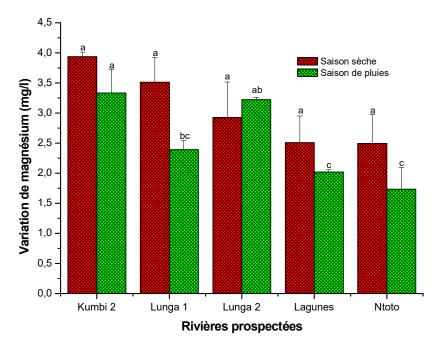


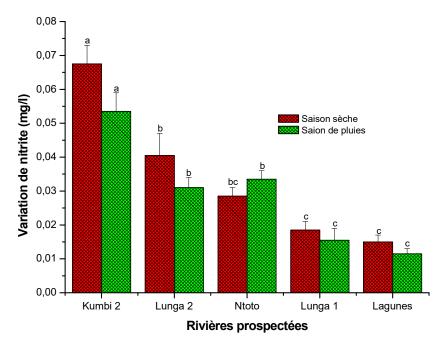
Figure 13 : Variation de la dureté totale dans les eaux de surface des hydrosystèmes prospectés pendant la saison sèche de juillet à septembre 2022) et pendant la saison pluvieuse (d'octobre 2022 à avril 2023) dans le bassin versant côtier de la RD Congo, province du Kongo Central, territoire de Muanda

3.3.6. Ion magnésium (Mg++)

De manière générale, les concentrations moyennes les plus élevées en magnésium sont observées pendant la saison sèche. Les données visualisées sur la figure 14 ci-dessus montrent que les concentrations moyennes de ce paramètre relevées pendant la saison sèche sont plus accentuées en ions magnésium dans la rivière Kumbi 2 $(3,93\pm0,07 \text{ mg/L})$ que dans d'autres milieux aquatiques étudiés où la rivière Ntoto accuse une concentration plus faible avec une valeur moyenne de $2,49\pm0,47 \text{ mg/L}$. La variation est significative (F = 2,14; p = 0,2135; LSD = 1,5796) entre les valeurs moyennes de différents milieux aquatiques étudiés. L'ordre décroissant de ces écosystèmes, en rapport avec le paramètre assujetti pendant la saison sèche s'inscrit dans le classement suivant : Kumbi 2 $(3,9365\pm0,0765 \text{ mg/L}) > \text{Lunga 1} (3,51\pm0,41 \text{ mg/L}) > \text{Lunga 2} (2,92\pm0,58 \text{ mg/L}) > \text{Lagunes} (2,5\pm0,44 \text{ mg/L}) > \text{Ntoto} (2,49\pm0,47 \text{ mg/L})$.

Pendant la saison des pluies par contre, les résultats obtenus de ce paramètre montrent que les concentrations les plus élevées se rencontrent également dans les rivières Kumbi 2 (3,33 \pm 0,38 mg/L) et Lunga 2 (3,22 \pm 0,03 mg/L) avec une différence très significative (F = 8,35; p = 0,0194; LSD = 0,8983). La faible valeur de concentration en ion magnésium est observée dans la rivière Ntoto (1,73 \pm 0,36 mg/L). Rangés par ordre décroissant, les écosystèmes sous étude, observés pendant la saison pluvieuse, en rapport avec la concentration des ions de magnésium, se classent comme suit : Kumbi 2 (3,33 \pm 0,38 mg/L) > Lunga 2 (3,22 \pm 0,03 mg/L) > Lunga 1 (2,39 \pm 0,15 mg/L) > Lagunes (2,01 \pm 0,03 mg/L) > Ntoto (1,73 \pm 0,36 mg/L).




Figure 14: Variation de la concentration des ions magnésium dans les eaux de surface des hydrosystèmes prospectés pendant la saison sèche de juillet à septembre 2022) et pendant la saison pluvieuse (d'octobre 2022 à avril 2023) dans le bassin versant côtier de la RD Congo, province du Kongo Central, territoire de Muanda

3.3.7. Nitrite (NO⁻2)

L'analyse des résultats repris sur la figure 15 ci-dessus montre, de façon générale, que la concentration en nitrite varie d'une période à l'autre et d'une rivière à l'autre :

- Pendant la saison sèche, les concentrations moyennes de nitrite sont plus élevées dans les rivières Kumbi 2 (0,06±0,00 mg/L) et Lunga 2 (0,04±0,00 mg/L) que dans les autres écosystèmes aquatiques retenus dans le cadre de cette étude. Les lagunes (0,011±0,00 mg/L) présentent la valeur moyenne de concentration en nitrite la plus faible. L'analyse de la variance à un facteur appliquée aux données de ce paramètre dégage une différence très hautement significative (F = 25,2; p = 0,0016; LSD = 0,0153) entre les concentrations moyennes de nitrite de différents sites d'échantillonnage. L'ordre décroissant de ces hydrosystèmes étudiés en rapport avec le paramètre cis-mentionné prélevé pendant la saison sèche est: Kumbi 2 (0,06±0,00 mg/L) > Lunga 2 (0,04±0,00 mg/L) > Ntoto (0,02±0,00 mg/L) > Lunga 1 (0,18±0,00 mg/L) > Lagunes (0,01±0,00 mg/L).
- Pendant la saison des pluies, ce sont les eaux des rivières Kumbi 2 (0,05±0,00 mg/L) et Ntoto (0,02±0,00 mg/L) qui présentent des concentrations en nitrite plus élevées ayant une différence très significative (F = 23,2 ; p = 0,0020 ; LSD = 0,0126) avec les valeurs moyennes des autres écosystèmes aquatiques. Classés par ordre décroissant, en rapport avec la concentration en ions de nitrite, en saison des pluies, les écosystèmes aquatiques évalués se rangent de façon de façon suivante : Kumbi 2 (0,05±0,00 mg/L) > Lunga 2 (0,03±0,00 mg/L) > Ntoto (0,02±0,00 mg/L) > Lagunes (0,00±0,00 mg/L) > Lunga 1 (0,01±0,00 mg/L).

Figure 15: Variation de la concentration des ions de nitrite dans les eaux de surface des hydrosystèmes prospectés pendant la saison sèche (de juillet à septembre 2022) et pendant la saison pluvieuse (d'octobre 2022 à avril 2023) dans le bassin versant côtier de la R.D Congo, province du Kongo Central, territoire de Muanda

3.3.8. Nitrate (NO⁻3)

Il se dégage des résultats repris sur la figure 16 ci-dessus que de façon générale, la teneur en nitrate varie en fonction de la saison et de la rivière considérée avec de concentrations plus élevées observées pendant la saison sèche où :

- Pendant la saison sèche, les concentrations moyennes des ions nitrate les plus élevées sont observées dans la rivière Kumbi 2 (53,65±2,39 mg/L) suivie des rivières Lunga 2 et 1 avec des valeurs moyennes respectives de 26,78±1,54 mg/L et 21,59±2,44 mg/L. La différence de concentrations moyennes des eaux des milieux aquatiques prospectés est très hautement significative (F = 98,4; p = 0,0001; LSD = 6,3105). Rangées par ordre décroissant, les rivières et lagunes prospectées dans le cadre de cette étude, pendant la saison sèche présentent le classement suivant en fonction de la teneur en ions nitrate: Kumbi 2 (53,65±2,39 mg/L) > Lunga 2 (26,78±1,54 mg/L) > Lunga 1 (21,59±2,44 mg/L) > Lagunes (14,13±0,9 mg/L) > Ntoto (9,74±0,4 mg/L).
- Pendant la saison de pluies, la même tendance est observée où les rivières Kumbi 2 (44,53±3,45 mg/L), Lunga 2 (23,7±1,68 mg/L) et Lunga 1 (18,51±0,39 mg/L) présentent des valeurs plus élevées en rapport avec ce facteur, prélevé pendant la saison des pluies, les milieux aquatiques concernés se rangent de manière suivante : Kumbi 2 (44,53±3,45 mg/L) > Lunga 2 (23,7±1,68 mg/L) > Lunga 1 (18,51±0,39 mg/L) > Ntoto (14,21±0,79 mg/L) > Lagunes (10,27±0,99 mg/L. L'analyse de la variance appliquée aux données de ce facteur, la concentration en nitrate, dégage une différence très hautement significative (F = 54,6; p = 0,0003; LSD = 6,5965).

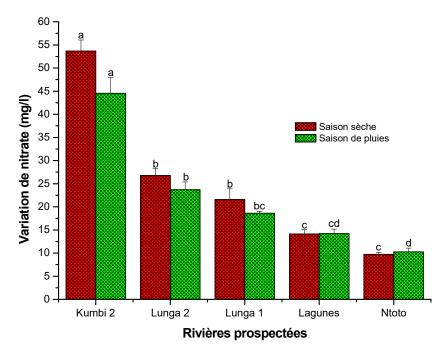
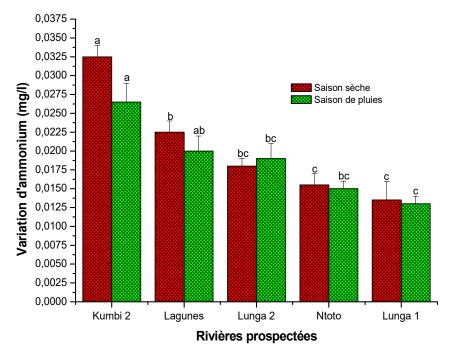


Figure 16 : Variation de la concentration des ions nitrate dans les eaux de surface des hydrosystèmes prospectés pendant la saison sèche (de juillet à septembre 2022) et pendant la saison pluvieuse (d'octobre 2022 à avril 2023) dans le bassin versant côtier de la RD Congo, province du Kongo Central, territoire de Muanda


3.3.9. Ammonium (NH^{+}_{4})

De manière générale, il ressort de l'observation des résultats repris dans la figure 17 ci-dessus que les concentrations en ions ammonium les plus élevées sont observées pendant la saison sèche.

En effet, pendant la saison sèche, les eaux de la rivière Kumbi 2 avec une valeur moyenne de concentration en ions ammonium de $0,001\pm0,03$ mg/L et Lagunes avec $0,02\pm0,00$ mg/L présentent des valeurs moyennes les plus élevées que les autres milieux aquatiques observés. L'analyse de la variance appliquée aux données de ce paramètre pendant la saison sèche dégage une différence très hautement significative (F = 20,4; p = 0,0027) entre les concentrations moyennes de différentes rivières et lagunes étudiées. La valeur critique de LSD test est (6,0830). L'alignement par ordre décroissant de ces hydrosystèmes pendant la saison sèche est le suivant : Kumbi 2 ($0,001\pm0,00$ mg/L) > Lagunes ($0,02\pm0,00$ mg/L) > Lunga 2 ($0,01\pm0,00$ mg/L) > Ntoto ($0,01\pm0,00$ mg/L) > Lunga 1 ($0,01\pm0,00$ mg/L)

Pendant la saison pluvieuse, les mêmes observations sont aussi faites où les eaux de la rivière Kumbi 2 $(0.02\pm0.00 \text{ mg/L})$ et Lagunes $(0.02\pm0.00 \text{ mg/L})$ présentent des valeurs moyennes en ion ammonium les plus élevées que les autres rivières avec une différence très significative (F = 8,37; p = 0.0193; LSD = 6,554) entre les différentes valeurs moyennes calculées. Classés par ordre croissant les milieux aquatiques étudiés se classent de la manière suivante : Kumbi 2 $(0.02\pm0.00 \text{ mg/L}) < \text{Lagunes}$ $(0.02\pm0.00 \text{ mg/L}) < \text{Lunga}$ 2 $(0.01\pm0.00 \text{ mg/L}) < \text{Ntoto}$ $(0.01\pm0.00 \text{ mg/L}) < \text{Lunga}$ 1 $(0.01\pm0.00 \text{ mg/L})$.

Figure 17 : Variation de la concentration des ions d'ammonium dans les eaux de surface des hydrosystèmes prospectés pendant la saison sèche (de juillet à septembre 2022) et pendant la saison pluvieuse (d'octobre 2022 à avril 2023) dans le bassin versant côtier de la RD Congo, province du Kongo Central, territoire de Muanda

3.3.10. Demande chimique en oxygène (DCO₅)

Il ressort des résultats repris sur la figure 18 ci-dessous que les concentrations moyennes les plus élevées de la DCO₅ sont observées pendant la saison des pluies dans les rivières Kumbi 2 (29,02 \pm 0,65 mg/L) et Lunga 2 (25,42 \pm 0,44 mg/L) avec une différence très hautement significative (F = 92,2 ; p = 0,0001 ; LSD = 2,8547). Face à ce paramètre, la classification en ordre croissant de la DCO₅ en saison pluvieuse se présente de la manière suivante : Ntoto (9,91 \pm 0,44 mg/L) < lagunes (16,62 \pm 0,66 mg/L) < Lunga 1 (18,13 \pm 1,33) < Lunga 2 (25,42 \pm 0,44 mg/L) < Kumbi 2 (29,02 \pm 0,68).

Pendant la saison sèche, les concentrations les plus élevées avec une différence très hautement significative (F = 27.1; p = 0.0014; LSD = 3.2100) sont observées dans les eaux des rivières Kumbi 2 (25.52 ± 0.71 mg/L) et Lunga 1 (22.39 ± 1.05 mg/L) avec une faible valeur dans la rivière Ntoto (13.22 ± 0.79 mg/L).

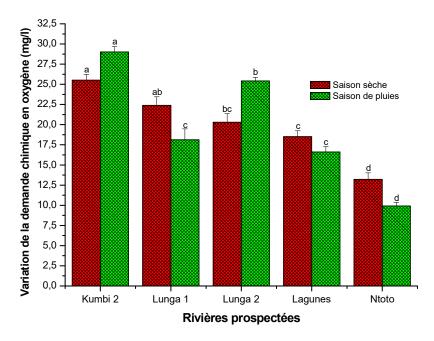


Figure 18: Variation de la demande chimique en oxygène dans les eaux de surface des hydrosystèmes prospectés pendant la saison sèche (de juillet à septembre 2022) et pendant la saison pluvieuse (d'octobre 2022 à avril 2023) dans le bassin versant côtier de la RD Congo, province du Kongo Central, territoire de Muanda

3.3.11. Demande biologique en oxygène (DBO₅)

Il ressort de l'examen des sur la DBO₅ repris sur la figure 19 que de manière générale, la variation de la demande biologique en oxygène dans les eaux des différents écosystèmes aquatiques prospectés varie en fonction des rivières et lagunes ainsi que de la saison.

Pendant la saison sèche, les résultats montrent que la DBO_5 prélevée est plus forte dans la rivière Kumbi 2 (15,62±0,68 mg/L) suivi de Lunga 2 (13,61±0,52 mg/L). La demande est faible dans la rivière Ntoto (7,26±1,09 mg/L). L'analyse de la variance à un facteur appliquée aux données de ce paramètre dégage une différence très significative (F = 16,6; p = 0,0043; LSD = 2,9363) entre les moyennes concentrations moyennes de DBO_5 .

Pendant la saison des pluies, la demande est plus forte dans les lagunes $(16,08\pm1 \text{ mg/L})$ et plus faibles dans la rivière Ntoto $(6,92\pm0,43 \text{ mg/L})$. L'analyse de la variance des données de ce paramètre relevées pendant la saison des pluies révèle une différence statistique très significative (F = 37,6; p = 0,0006; LSD = 2,2288) entre les moyennes de DBO₅.

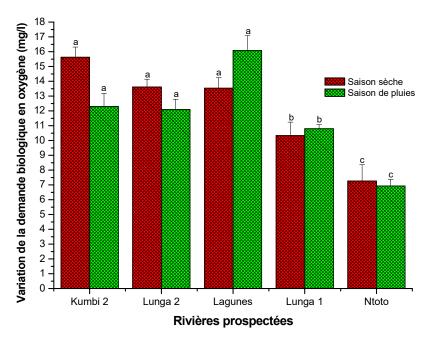


Figure 19 : Variation de la demande biologique en oxygène (mg/L) de l'eau des rivières et lagunes prospectées pendant la saison sèche et des pluies (d'octobre 2022 à avril 2023) dans le bassin versant côtier de la RD Congo, province du Kongo Central, territoire de Muanda

3.4. Classification hiérarchique ascendante des sites d'études en fonction des paramètres hydrologiques et physicochimiques

3.4.1. Pendant la saison sèche

Le dendrogramme de classification hiérarchique ascendante des rivières et lagunes prospectées établi en fonction des paramètres hydrologiques et physico-chimiques relevés pendant la saison sèche met en évidence deux principaux groupes distincts avec une différence très significative ($R^2 = 0.9679$). Les résultats repris sur la figure 20 montrent que les eaux des Lagunes présentent des caractéristiques hydrologiques et physico-chimiques différentes des autres écosystèmes aquatiques pendant cette saison et forment à elles seules le deuxième groupe par rapport aux autres hydrologiques et physico-chimiques des eaux sont similaires. Quant au premier groupe, il est subdivisé en deux sous-groupes où les rivières Ntoto et Kumbi 2 forment le premier sous-groupe par rapport au deuxième sous-groupe formé par les rivières Lunga 1 et Lunga 2.

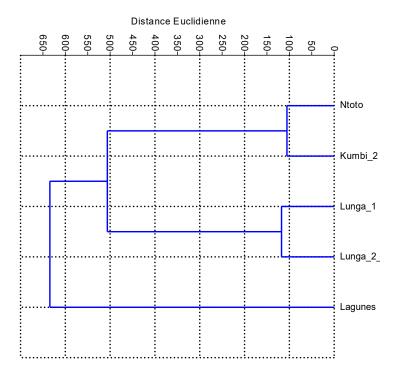
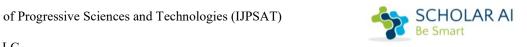


Figure 20 : Diagramme de classification hiérarchique ascendante des sites d'échantillonnage en fonction des paramètres hydrologiques et physico-chimiques relevés pendant la saison sèche (de juillet à septembre 2022)


3.4.2. Pendant la saison des pluies

Les informations reprises sur la figure 21 ci-dessous montrent que les eaux de cinq écosystèmes aquatiques prospectés présentent des caractéristiques hydrologiques et physico-chimiques distinctes pour les unes et très rapprochées pour les autres avec une différence très significative ($R^2 = 0.9108$). Le dendrogramme de classification hiérarchique ascendante établi en fonction des paramètres hydrologiques et physico-chimiques relevés pendant la saison des pluies dans ces rivières met en évidence la présence de deux principaux groupes et de deux sous-groupes. Le premier groupe est subdivisé en deux sous-groupes dont le premier est représenté par les Lagunes et le deuxième sous-groupe est formé des rivières Ntoto et Kumbi 2. Le deuxième groupe du dendrogramme est formé des rivières Lunga 1 et Lunga 2 dont les eaux présentent des caractéristiques hydrologiques et physico-chimiques très proches.

https://ijpsat.org/

SSN:2509-0119

Vol. 47 No. 1 October 2024, pp. 335-366

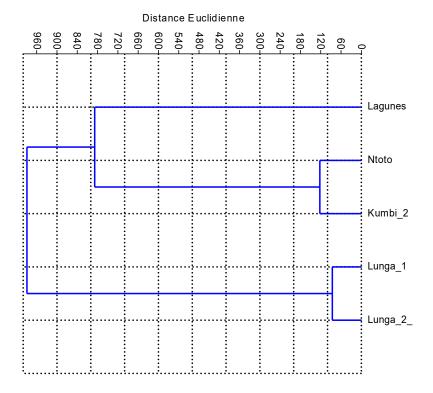


Figure 21 : Diagramme de classification hiérarchique ascendante des sites d'échantillonnage en fonction des paramètres hydrologiques et physico-chimiques relevés pendant la saison des pluies (d'octobre 2022 à avril 2023)

4. DISCUSSION

La compréhension claire du milieu biologique autant que le milieu physico – chimique est indispensable si l'on veut comprendre le dynamisme et les interrelations de la faune vis-à-vis de son milieu qu'entre ses composantes (Matthès, 1964). Ceci est d'autant plus vrai que Wetzel (2001); Kalff (2002) affirment que les écosystèmes aquatiques sont des milieux complexes présentant des caractéristiques hydrologiques et physico - chimiques variées caractérisées par de nombreux paramètres physiques, chimiques et biologiques.

Certains facteurs liés à la qualité de l'eau sont plus susceptibles d'être impliqués dans les pertes de poissons tels que l'oxygène dissous, la température et l'ammoniac. D'autres, tels que le pH, l'alcalinité, la dureté et la clarté de l'eau affectent les poissons, mais ne sont généralement pas directement toxiques (Edéa et al., 2019). Chaque facteur de qualité de l'eau interagit avec l'environnement et influence les autres paramètres, parfois de manière complexe. Ce qui peut être toxique et causer la mort dans une situation peut être sans danger dans une autre (Edéa et al., 2019).

Les observations des résultats sur les paramètres hydrologiques, physiques et chimiques ont montré que les écosystèmes aquatiques prospectés sont restés plus profonds pendant la saison de pluies que pendant la saison sèche. L'influence de ce facteur est soulignée par le fait que la profondeur des eaux de cours d'eaux est corrélée au régime de pluies. C'est pendant la saison de pluies qu'on note l'augmentation sensible des eaux. Cette augmentation est un élément déclencheur de comportement typique de la faune ichtyologique de certaines espèces comme le Clarias par exemple. A cette période, on observe la migration des poissons vers les affluents ou vers les zones inondées. Le cycle de reproduction de Clarias gariepinus, par exemple, coïncide avec le début de la saison de pluies (période de crues), au mois d'octobre. Le stimulus final de la ponte, chez cette espèce, semble être associé à la montée des eaux et à l'inondation des zones marginales peu profondes. A l'inverse, l'étiage provoque le retour obligatoire de certains poissons vers le lit du fleuve ou de la grande rivière. A cette période, la biomasse de plusieurs espèces de poissons par volume d'eau serait certainement la plus élevée de l'année entraînant des compétitions de toutes sortes pour les

Vol. 47 No. 1 October 2024, pp. 335-366

espèces (alimentation, prédation, cannibalisme, etc.) avec conséquence, le ralentissement de la croissance, au moins chez les espèces subissant la compétition ou étant consommées par des prédateurs (Wamuini, 2010). La corrélation entre la profondeur et les cours d'eaux avec le régime de pluie est aussi constaté par Wamuini (2010) qui a enregistré des variations de profondeurs de la rivière Inkisi et de ses affluents se marquer différemment selon les périodes au cours de l'année : augmentation des eaux pendant la période de crues et l'inverse pendant la période d'étiage.

Les eaux de différents écosystèmes aquatiques prospectés sont restées chaudes pendant les deux saisons mais avec des valeurs moyennes plus élevées observées pendant la saison des pluies avec des températures plus élevées dans les lagunes. Ces observations confirment l'hypothèse selon laquelle, la variation de température est assez faible dans la forêt et l'amplitude peu importante (Matthès, 1964; Kiss, 1977; Nyongombe, 1993). Ceci se comprend aisément quand on sait que les eaux de la plupart de ces cours d'eau coulent sous couvert végétal constitué principalement, pour ces cas d'espèces, de *Cyperus paperus*. Par contre, les lagunes, qui sont à découvert, recevant tous les rayons solaires, voient leur température s'élever et dépasser le maxima de 30 °C affichées par les autres cours d'eaux. D'où, l'affirmation de certains auteurs notamment Kisss (1977), selon laquelle, l'une des causes de réchauffement des eaux de cours d'eau serait le contact de ces dernières avec les couches d'air atmosphérique chaudes. En effet, la température de l'air est immédiatement sous la dépendance de la radiation solaire. De la constatation générale, comme partout ailleurs, en zone équatoriale et subtropicale, on assiste à l'élévation très grande de la température de l'air. Ceci trouve son explication par l'incidence quasi verticale des rayons solaires. Il se fait que, les molécules d'eau à la surface du cours d'eau, frappées par les rayons solaires s'évaporent et l'énergie d'évaporation est consommée par les couches d'eau immédiatement en contact avec l'air atmosphérique.

Comme facteur écologique, l'importance de la température des eaux est évidente. En effet, la température influe sur le métabolisme, le développement embryonnaire, la croissance, la respiration, la reproduction et sur la distribution des espèces animales et végétales (Dépasse, 1956; Descamps, 1967; Huet, 1970; Hyne, 1970 *in* Wamuini, 2010). La température est l'un des facteurs climatiques qui joue un rôle écologique de premier plan. Face à celle-ci, toute espèce animale ou végétale présente une limite de tolérance inférieure et supérieure. D'autre part, Phillipart (1977); Meunier (1988); Baijot *et al.* (1994); Panfili *et al.* (2002) soutiennent que les basses températures font partie des facteurs qui provoquent le ralentissement et/ou l'arrêt de la croissance chez des pièces osseuses. Des intervalles de température de l'eau des cours d'eau sont signalés dans la littérature; les travaux de Nyongombe (1993), réalisés dans la rivière de Masendula à Kisangani, révèlent des minima et de maxima respectifs de 23,7 et 25 °C. La température moyenne se situe à 23,7 °C. De même, des intervalles de température de l'eau des cours d'eau ne s'écartant pas de nos observations sont également signalés dans les études de Dépasse (1956) qui a enregistré l'intervalle de 23 à 29 °C; Gosse (1963) de 20,9 à 27,9 °C; Golame et Symoens (1990) de 24 à 28,5 °C.

La transparence de l'eau de quatre cours d'eaux et lagunes prospectés a révélé une variation saisonnière où les rivières ainsi que les lagunes sont plus transparentes pendant la saison sèche que pendant la saison des pluies. Les valeurs moyennes de transparence plus élevées des rivières Kumbi 2 et Ntoto sont dues à leur faible profondeur qui laisse voir le substrat de fond des rivières. Ces résultats montrent que pendant la saison sèche, les eaux de cours d'eaux deviennent plus transparentes, car la vitesse du courant devenue faible, on observe la floculation et l'agrégation de certaines particules (Baucart et Francis-Bœuf, 1942). Durant la saison des pluies, les eaux montent de niveaux, la transparence devient partielle et diminue du fait de nombreuses particules entrainées par les eaux de ruissèlement arrivent dans le lit du cours d'eau. Du point de vue écologique, selon Blaber et Blaber (1980) *in* Wamuini (2010), la transparence est souvent un facteur avancé pour expliquer la productivité et le fonctionnement trophique des milieux aquatiques. Elle permet d'évaluer la zone euphotique nécessaire dans l'estimation de la production primaire et la teneur de l'eau en charge de diverses natures (Wamuini, 2010).

De manière générale, les eaux de différents écosystèmes aquatiques prospectés ont été moins concentrées en matières solides en suspension pendant la saison sèche et plus concentrées pendant la saison des pluies. Les solides totaux dissous influencent la transparence et la coloration de l'eau d'un hydrosystème (Matthès, 1964). Un fort pourcentage de TDS gène la pénétration de rayons solaires et toutes les conséquences qui s'ensuivent jusqu'à impacter sur la richesse de la faune ichtyologique de ces cours d'eau. En effet, si les eaux sont moins troubles et plus claires, la pénétration des rayons solaires dans

Vol. 47 No. 1 October 2024, pp. 335-366

l'eau sera presque totale, ce qui favorise la photosynthèse et donc la production primaire, celle-ci influençant sur la richesse de la diversité ichtyologique. Selon Bruton (1996), la sédimentation et l'érosion sont les principaux mécanismes responsables des modifications de la turbidité et par ce fait même de la transparence des eaux. L'augmentation de la charge en matières en suspension dans les eaux et des dépôts vaseux dans les lacs et rivières ont de nombreuses conséquences sur la vie aquatique. Si l'eau est trouble, comme dans les Lagunes, les rivières Lunga 1 et 2, l'activité photosynthétique est quasi nulle ce qui empêche le développement des phytoplanctons avec comme conséquence la pauvreté de ces eaux en faune ichtyologique. Ensuite, les espèces de poissons vivant dans ce milieu à eaux fortement troublées développent des adaptations organiques qui augmentent leur sensibilité afin de compenser la vision qui y est réduite.

Les eaux des rivières et lagunes prospectées ont présenté des taux élevés en ions dissous qui ont varié selon les saisons (avec une légère augmentation en saison sèche) et selon les écosystèmes aquatiques considérés. Ces résultats sont proches de ceux obtenus par Yao et Ahoussi (2020). Ces derniers ont relevé des valeurs moyennes de conductivité comprises entre 183,2 à 1909 µS/cm, avec une moyenne de 608,74 µS/cm. Par contre, dans le bassin de la rivière N'Sele (RD Congo), Monsembula (2018) a relevé les valeurs de conductivité comprises entre 3,95 µS/cm et 4,19 µS/cm (la conductivité moyenne étant de 4,07 ± 1,43 µS/cm). Cela montre que les eaux sont en grande partie moyennement minéralisées et donc ne contiennent pas assez de sels minéraux dissous. Ces valeurs de conductivités électriques sont aussi similaires des résultats des études antérieures d'Ahoussi *et al.* (2010); Loko *et al.* (2013). De plus, ces eaux traversent des zones où sont installées des activités industrielles d'exploitation pétrolière et autres activités anthropiques (activités champêtres) qui contribuent parfois à la forte minéralisation des sols et écosystèmes aquatiques largement supérieurs aux valeurs des eaux brutes. Cette minéralisation élevée dans des cours d'eaux est liée aux activités anthropiques internes en amont de la zone (activités minières) (Yao et Ahoussi, 2020). Eblin *et al.* (2014) rapportent que l'activité anthropique est un phénomène intervenant dans la minéralisation par les apports superficiels. En plus, les eaux de ces écosystèmes aquatiques subissent continuellement les influences de l'océan Atlantique qui, à maintes reprises, leur envoie les eaux salées. Aussi, le vent qui souffle de l'océan vers le continent est chargé des gouttelettes des eaux salées de l'océan qui tombent fréquemment dans les eaux de ces milieux aquatiques.

Le pH influence fortement la diversité biologique des lacs et des rivières. En effet, la majorité d'organismes aquatiques ont besoin d'une valeur optimale de pH comprise entre 5,5 et 9 (Offen et al., 2009). Des variations importantes de pH peuvent donc compromettre certaines de leurs fonctions essentielles telles que la respiration et la reproduction. Ainsi, les eaux acidifiées sont caractérisées par un déclin de la diversité biologique (Monsembula, 2018). Les résultats d'analyse du potentiel d'hydrogène ont montré que les eaux des cours d'eaux et lagunes prospectées sont acides pendant la saison sèche comme la saison des pluies avec des valeurs moyennes plus acides observées pendant la saison des pluies. Ces valeurs indiquent que le pH de ces écosystèmes aquatiques est un facteur susceptible de fluctuer de façon saisonnière et cette fluctuation serait liée à plusieurs raisons. Pendant la saison de pluies, les rivières drainent d'importantes quantités d'eau acidifiées ayant lessivé des terres couvertes de matières acidifiantes (Boika et al., 2021). A cela s'ajoute le dépôt des matières végétales qui tombent quotidiennement dans l'eau en période de crue et qui se décomposent produisant ainsi les acides humiques thermostables dissoutes dans l'eau, fournissant les acides humiques et donnant aussi la teinte brune à l'eau. Elles sont aussi responsables de l'acidité des cours d'eaux en Afrique tropicale. Matthès (1964) estime dans son étude que la nature géologique et pédologique des terrains traversés par les cours d'eaux et le déroulement des activités photosynthétiques des végétaux favorisent aussi l'acidité des eaux de rivières. Les résultats observés sur le pH des eaux étudiées vont dans le même sens que ceux obtenus par Matthès (1964); Millet (1987); Dufour (1987); Nyongombe (1993); Mamonekene et al. (2005); Ibala (2010); Wamuini (2010). En effet, dans la région du lac Tumba et d'Ikela, Matthès (1964) a obtenu un pH variant entre 4,0 à 6,5 ; les grosses rivières et certains petits ruisseaux pouvant n'être que faiblement acides (pH = 5,5-6,5) mais d'autres, au contraire, l'étant fortement acides (pH = 4,8-6,5) mais d'autres, au contraire, l'étant fortement acides (pH = 4,8-6,5) mais d'autres, au contraire, l'étant fortement acides (pH = 4,8-6,5) mais d'autres, au contraire, l'étant fortement acides (pH = 4,8-6,5) mais d'autres, au contraire, l'étant fortement acides (pH = 4,8-6,5) mais d'autres, au contraire, l'étant fortement acides (pH = 4,8-6,5) mais d'autres, au contraire, l'étant fortement acides (pH = 4,8-6,5) mais d'autres, au contraire, l'étant fortement acides (pH = 4,8-6,5) mais d'autres, au contraire, l'étant fortement acides (pH = 4,8-6,5) mais d'autres, au contraire, l'étant fortement acides (pH = 4,8-6,5) mais d'autres, au contraire, l'étant fortement acides (pH = 4,8-6,5) mais d'autres, au contraire, l'étant fortement acides (pH = 4,8-6,5) mais d'autres, au contraire, l'étant fortement acides (pH = 4,8-6,5) mais d'autres, au contraire, l'étant fortement acides (pH = 4,8-6,5) mais d'autres, au contraire, l'étant fortement acides (pH = 4,8-6,5) mais d'autres, au contraire, l'étant fortement acides (pH = 4,8-6,5) mais d'autres, au contraire, l'étant fortement acides (pH = 4,8-6,5) mais d'autres, au contraire, l'étant fortement acides (pH = 4,8-6,5) mais d'autres, au contraire, l'étant fortement acides (pH = 4,8-6,5) mais d'autres, au contraire, l'étant fortement acides (pH = 4,8-6,5) mais d'autres, au contraire, l'étant fortement acides (pH = 4,8-6,5) mais d'autres, au contraire, l'étant fortement acides (pH = 4,8-6,5) mais d'autres, au contraire, l'étant fortement acides (pH = 4,8-6,5) mais d'autres, au contraire, l'étant fortement acides (pH = 4,8-6,5) mais d'autres, au contraire, l'étant fortement acides (pH = 4,8-6,5) mais d'autres, au contraire, l'étant fortement acides (pH = 4,8-6,5) mais d'autres, au contraire, l'étant fortement acides (pH = 4,8-6,5) mais d'autres, au contraire, l'étant fortement acides (pH = 4,86,50 eaux noires). Les marigots forestières pouvaient atteindre une acidité plus élevée (pH = 4-4,3) (Boika et al., 2022). Millet (1987) in Nyongombe (1993) analyse dans les lagunes de Togo, des eaux qui donnent des valeurs extrêmes de pH de 6,7 en amont lors de la reprise de l'écoulement des tributaires. Les constats de Nyongombe (1993) concourent également à nos observations. En effet, l'auteur a remarqué que les eaux de Masendula sont parfaitement acides : pH moyen de 4,3 avec des valeurs extrêmes variant entre 3 et 6. Ibala (2010) a trouvé des valeurs du pH variant entre 5,1 et 6,1 pour les eaux de la rivière

Vol. 47 No. 1 October 2024, pp. 335-366

Léfini. D'après Wamuini (2010), dans les rivières N'soni et Vini, les affluents de la rivière Inkisi dans le Kongo Central, bordées par des galeries forestières, les valeurs de pH sont de l'ordre de 5,6 à 6,1. L'auteur constate que les ruisseaux, sources et les eaux de plaines d'inondation, à fonds riches en débris végétaux, présentent des pH (5,2-6,3) particulièrement acides dans un milieu marécageux.

La saturation en oxygène dissous des rivières et lagunes prospectées a présenté des faibles valeurs moyennes relevées pendant la saison des pluies par rapport à la saison sèche. Ces résultats restent inférieurs à ceux obtenus par Wamuini (2010). Ce dernier a observé, dans la rivière d'Inkisi et ses affluents, des eaux riches en oxygène dissous dont les concentrations varient entre 7 à 10,2 mg.L⁻¹ soit un pourcentage de saturation variant entre 88 à 106% dans les stations échantillonnées et durant toutes les campagnes. Un tel pourcentage montre des eaux bien oxygénées pour toute vie aquatique. Par contre, des valeurs concomitantes aux nôtres ont été observées par De Kimpe (1964); Munsala (1988); Golama et Symoyens (1990). Ils ont signalé de valeurs en oxygène dissous suivantes respectivement : 2,8 mg.L⁻¹; 2,7 mg.L⁻¹; 1,4 mg.L⁻¹ et 2,3 mg.L⁻¹. Nyongombe (1993) a obtenu une concentration en oxygène dissous, dans les eaux de Masendula, de 4,6 mg.L⁻¹ soit 55,8 % de saturation. Il a jugé, de prime à bord, cette valeur bonne pour la vie des poissons, mais, dans certaines circonstances, elle peut devenir critique, comme lors de la phase d'asséchement où les eaux deviennent turbides à cause de l'augmentation de la turbulence au niveau des sédiments et d'accroissement du phytoplancton. Ce qui pourrait provoquer une variabilité assez grande des teneurs en oxygène dissous dans le temps et dans l'espace avec finalement apparition des périodes d'anoxie pendant une partie de la nuit ou lors des journées peu ensoleillées.

Les observations d'analyse de ces deux paramètres dans le cadre de cette étude montrent à suffisance que pendant la saison de pluies, la pauvreté des eaux en oxygène dissous est fort remarquable. La saturation de 33,96 % de nos eaux étudiées nous paraît moins bonne pour la vie normale des poissons. Ils peuvent ressentir des conditions extrêmes qui constituent des contraintes parfois intolérables et conduisent à l'élimination de la plupart des espèces. D'après Lévêque et Paugy (2006), quelques-unes, cependant, dans la mesure où elles ont développé des solutions résilientes à ces contraintes, sont susceptibles de supporter ces conditions extrêmes, tout au moins dans certaines limites et (ou) durant une période déterminée qui leur permet d'attendre le retour des conditions plus favorables. Ceci nous amène à dire que toutes les espèces de poissons n'ont pas les mêmes réactions devant l'hypoxie ou anoxie. Certaines sont contraintes de migrer dans les zones plus propices ou encore elles restent dans le milieu et meurent sur place. Les autres, par contre, développent des adaptations morphologiques, physiologiques et comportementales leur permettant de faire face à cette désoxygénation qui s'opère dans l'eau sous l'effet de divers facteurs : outre ceux évoqués plus haut, le réchauffement de l'eau, la pollution, la stratification de l'eau, etc. Les adaptations des poissons face aux conditions extrêmes d'hypoxie ou d'anoxie se rencontrent chez de nombreux genres et espèces.

Les nitrites et nitrates constituent l'un des composés azotés présents dans les eaux, en particulier les eaux à proximité des sites miniers et d'activités industrielles intenses. Les teneurs en nitrates observées varient en fonction de la saison et de la rivière considérée. Ces résultats sont légèrement supérieurs à ceux obtenus par Monsembula (2018). D'après ce dernier, la concentration moyenne des eaux de la N'Sele (dans la ville de Kinshasa RD Congo) en nitrates et nitrites était quasiment nulle (sous forme de trace) ou soit légèrement inférieur à 0,01 mg/L. Cette variabilité spatiale et temporelle des teneurs en nitrites et nitrates des eaux traduit également une diversité dans leur origine (Yao et al., 2020). Selon les mêmes auteurs, dans une eau naturelle, la minéralisation nitratée peut avoir plusieurs origines. Le nitrite s'oxyde facilement pour donner du nitrate, c'est pourquoi il est rarement présent à des concentrations importantes en eau douce.

En effet Benaabidat (2000) stipule que les fortes teneurs en nitrates rencontrées dans les eaux sont dues au lessivage des sols et à la décomposition de la matière organique ou bien liées à la déforestation. Les eaux sont sous l'influence d'une part, des pluies qui tombent directement sur les plans d'eau et d'autre part, des eaux de ruissellement qui transportent des sels nutritifs en saison pluvieuse dans les différents cours d'eau par le phénomène de ruissellement. Les activités agricoles constituent également une source de production des nitrates (Chaouay *et al.*, 2016). La présence des certaines activités anthropiques (industries pétrolières, activités agricoles, etc.) dans la zone d'étude pousse à croire à cette hypothèse. Les observations par Lakhili *et al.* (2015); Adjagodo *et al.* (2017) ont montré l'influence des activités anthropiques sur la minéralisation des eaux de

surface. La minéralisation peut aussi être influencée par les sols ferralitiques qui se caractérisent par leur richesse et leur fertilité représentées par les écosystèmes agricoles que sont les bas-fonds marécageux et les plaines alluviales.

5. CONCLUSION

SSN:2509-0119

Cette étude avait pour objectif général de déterminer la nature hydrologique ainsi que la qualité physique et chimique de quelques rivières et lagunes du bassin versant côtier de la République Démocratique du Congo dans la province du Kongo Central, territoire de Muanda en vue de mettre en évidence les conditions dans lesquelles sont soumises les ressources halieutiques qui peuplent ces hydrosystèmes.

Les résultats obtenus ont montré que les cinq écosystèmes aquatiques prospectés ne présentent pas les mêmes caractéristiques hydrologiques, physiques et chimiques et, ces paramètres abiotiques sont variables en fonction des saisons. Il a été observé que les eaux des Lagunes présentent des caractéristiques hydrologiques et physico-chimiques différentes par rapport aux rivières Ntoto, Kumbi 2, Lunga 1 et Lunga 2. Pendant la saison des pluies, les eaux des Lagunes, des rivières Ntoto et Kumbi 2 présentent une affinité des variables abiotiques évalués par rapport aux rivières Lunga 1 et Lunga 2 qui ont aussi des similarités des paramètres hydrologiques et physico-chimiques pendant la même saison. Néanmoins, les caractéristiques abiotiques de ces écosystèmes aquatiques remplissent les conditions abiotiques favorables pour la survie et le maintien des organismes aquatiques dans ce bassin versant côtier. Des recherches ultérieures allant dans le sens de monitoring contribueront à clarifier le devenir de ces hydrosystèmes ainsi que de la diversité biologique qui s'y trouve.

REMERCIEMENTS

Les auteurs remercient vivement toute l'équipe montée pour assurer les campagnes d'échantillonnage pendant la récolte des données de cette étude notamment Monsieur BALENZA BALENZA César, MADIYA MASAKI Caleb et MOSENGO MBANGI Jeancy.

REFERENCES

- [1]. Adjagodo A., Agassounon D.T.M., Kelomè N.C., Vissin E.W. & Agbossou E., 2017. Pollution physique et bactériologique de l'eau du fleuve dans la Basse Vallée de l'Ouémé pendant les périodes de basses et hautes eaux au Bénin. European Scientific Journal, 13(33): 1857-7881.
- [2]. Ahoussi K.E., Soro N., Koffi Y.B., Soro G. & Biemi J., 2010. Origine de la minéralisation des eaux des aquifères discontinues sous couvert forestier de la zone Sud de la Côte d'Ivoire : cas de la région d'Abidjan-Agboville. International Journal of Biological and Chemical Sciences, 4(3): 782-797.
- [3]. Baijot E., Moreau J. & Bouda S., 1994. Aspects hydrobiologiques et piscicoles de retenues d'eau en zone soudano-sahélienne. CTA, Wageningen et commission des communuatés Euroéennes Bruxelles, 250 p.
- [4]. Baucart J. & Bœuf F.C., 1942. La vase (sédiment et sédimentation). Herman et Cie. Paris, 67 p.
- [5]. Benaabidat L., 2000. Caractérisation du bassin versant de Sebou, hydrologie, qualité des eaux et géochimie de sources thermales. Thèse en hydrologie à FST-Saïs, 250 p.
- [6]. Boika M.N.A., Lusasi S.W., Nsimanda I.C., Pwema K.V. & Musibono E.D., 2022. Influence of environmental variables on fish distribution in the flooded swamp forest of the lake Tumba Micro-basin on the Mbandaka- Research Center in Ecology and Forestry of Mabali (CREF Mabali) Road Axis in Bikoro, Equateur Province (DR Congo). Annual Research & Review in Biology, 37(7): 25-43. DOI: 10.9734/ARRB/2022/v37i730520.
- [7]. Boika M.N.A., Pwema K.V., Lusasi S.W., Musibono E.D. & Ifuta N.B.S., 2021. Diversité ichtyologique de la forêt marécageuse inondée du réseau hydrographique du lac Tumba sur l'axe routier Mbandaka-CREF Mabali à Bikoro, Province de l'Equateur (RD Congo). International Journal of Progressive Sciences and Technologies, 25(2):156-168.
- [8]. Bruton M.N., 1996. Alternative life-History strategies of catfisfes. Aquat. Liv. Res 9 (Hors series), 35 41 pp.

Vol. 47 No. 1 October 2024, pp. 335-366

- [9]. Chaouay A., Okhrib R., Hilali M., Bazzi L., Chahid A., Khiri F., 2016. Contribution à l'étude de l'analyse physico-chimique et de la contamination métallique de l'eau de mer du littoral d'Agadir (Sud du Maroc). Journal of Materials and Environmental Sciences, 7(8):2748-2759.
- [10]. De Kimpe P., 1964. Contribution à l'étude hydrobbiologique du Luapula-Moero. Ann. Mus. Roy. Afr. Cent. IN, 9(12) : 1 238.
- [11]. Dépasse P., 1956. Monographie piscicole de la province Orientale. Description du milieu limnogique : Programmeet réalisation en matière de pêche et de pisciculture. Bull. Agr. Congo Belge, 7 (4) : 959 1088.
- [12]. Descamp H., 1967. Ecologie des tricoptères de la vallée de l'Aure (Hautes Pyrénées). Ann. Limnol., 3(3): 339 577.
- [13]. Dufour P., 1987. Lagunes du Nigéria In Africa wetlences and shallow water bodies. Ed. ORSTOM. Travaux det documents, 196-200.
- [14]. Eblin A.P.G., Sombo Soro N., Aka O., Mbiré N.O., 2014. Hydrochimie des eaux de surface de la région d'Adiaké (sudest côtier de la Côte d'Ivoire). Journal of Applied Biosciences 75:6259–6271.
- [15]. Edéa O.G., Hinvi L.C., Abou Y. & Gbangboche A.B., 2019. Synthèse bibliographique sur des paramètres biologiques et zootechniques du poisson-chat Africain Clarias gariepinus Burchell, 1822. European Scientific Journal, 15(27): 54-88. Doi :10.19044/esj.2019.v15n27p54.
- [16]. Golame S.K. & Symoens J.J., 1990. Caractéristiques physico-chimiques de quelques de quelques cours d'eau de Kisangani (Haut-Zaire) 1899-1990. Bull. Sciences, Acad., Roy. Sci. Outre Mer. Nouv. Serie 35(2): 145-157.
- [17]. Gosse J-P., 1963. Le milieu aquatique et écologie des poissons dans la région de Yangambi. Ann. Mus. Roy. Afr. Centr.., Sc., Zool., 116: 113-271.
- [18]. Huet M., 1970. Traité de pisciculture. 4^{eme} Ed. Ch., D.C Wyngaert, Bruxelles, 718 p.
- [19]. Hyene B.N., 1970. The ecology of running waters. Lirverpool University Press, Liverpool, 555 p.
- [20]. Ibala Z.C., 2010. Faune des poissons des rivières Luki et Lefini (Bassin du Congo) : diversité et écologie. Thèse de Doctorat en Sciences Biologiques, Katholieke University Leuven, 430 p.
- [21]. Kalff J., 2002. Limnology, Inland Water Ecosystems. Prentice Hal, New jerseyl, 592 p.
- [22]. Kiss R., 1977. Les poissons et la pêche dans le lac Ihema (Rwanda). Ann. Hydrobiol., 17(2): 263 318.
- [23]. Lakhili F., Benabdelhadi M., Bouderka N., Lahrach H. & Lahrach A., 2015. Etude de la qualité physicochimique et de la contamination métallique des eaux de surface du bassin versant de Beht (Maroc). European Scientific Journal, 11(11): 1857-7431.
- [24]. Lemoalle J., 2006. La diversité des milieux aquatiques. 11 30 p. In Lévêque C. & Paugy D. Ed. Les poissons des eaux continentales africaines : diversité, écologie et utilisation par l'homme. IRD, Paris, 564 p.
- [25]. Lévêque C. & Paugy D., 2006. Les poissons des eaux continentales africaines (Diversité, écologie, utilisation par l'homme). IRD, Paris, 564 p.
- [26]. Loko S., Ahoussi K.E., Koffi Y.B., Kakou N.F., Kouassi A.M. & Biemi J., 2013. Microbiological and physico-chemical quality of groundwater from artisanal sites of mining exploitation in the South-West of Côte d'Ivoire : case of the area of Hiré. International Journal of Scientific & Engineering Research, 4(9): 567-574.
- [27]. Luizi B.A., Lusasi S.W., Kamb T.J.C., Pwema K.V. & Nyongombe U.N.F., 2024. Diversité et écologie des espèces de poissons du genre Clarias (Clariidae, Siluriformes) du bassin versant côtier de la République Démocratique du Congo dans la province du Kongo Central, territoire de Muanda. International Journal of Applied Research, 10(2): 18-29.

Vol. 47 No. 1 October 2024, pp. 335-366

- [28]. Makanzu F.I., 2021. Risques côtiers en RD Congo. Evolution spatio-temporelle récente du trait de côte atlantique et vulnérabilité des communautés. Ed, Harmattan.
- [29]. Mamonekene V., Vreven E. & Zamba B.C., 2005. Données préliminaires sur l'ichtyofaune du bassin de Léfini. Rapport de mission de terrain, 10 p.
- [30]. Matthes H., 1964. Les poissons du Lac Tumba et de la Région d'Ikela : Etude systématique et écologique. Annls. Mus.r. Afr. Centr., 126 : 204 p.
- [31]. Meunier F.J., 1988. Détermination de l'âge individuel chez les Osteichthyens à l'aide de la squelettochronologie : historique et méthodologie. Acta Oecologica (Oecologia Generalis), 9 (3) : 299 329.
- [32]. Millet B., 1987. Les lagunes du Togo : Le système lagunaire du lac Togo. African Wetlands an shallow water bodies. Ed ORSTOM, Tervuren et Documents., 182-189.
- [33]. Monsembula I.J.-C., 2018. Ichtyofaune du bassin de la rivière N'sele, Ecorégion du Pool Malebo (région ichtyogéographique du Congo): Diversité et distribution. Thèse de Doctorat en Sciences Biologiques, Université de Kinshasa, R.D Congo, 283 p.
- [34]. Mulaji C., Disa-Disa P., Kibal I. & Culot M., 2016. Diagnostic de l'état agro pédologique des sols acides de la province de Kinshasa en république démocratique du Congo (RDC). Comptes Rendus Chimie, 19(7): 820-826.
- [35]. Munsala L., 1988. Contribution à l'étude de la faune ichtyologique des environs de Kisangani : Ichtyofaune de la rivière Ditubu (sous affluent du Zaïre/ Rive Gauche). Monographie inedite, Faculté des Sciences, Université de Kisangani, R.D Congo, 34 p.
- [36]. Nyongombe O.N.F., 1993. Contribution à l'étude écologique et biologique des poissons de la rivière Masendula (affluent de la Tshopo à Kisangani). Thèse de Doctorat, Institut Facultaire des Sciences Agronomiques, I.F.A., Yangambi, 175 p.
- [37]. Offem B.O., Samsons Y. A. & Omoni I.T., 2009. Trophic écology of commercially important fishes in the Cross River, Nigeria. The journal of Animal & plant Sciences, 19(1): 37-44.
- [38]. Panfini J., De Pontual H., Troadec H. & Wright P.J., 2002. Manuel de sclérochronologie des poissons. IFREMER/IRD, 464 p.
- [39]. Phillipart J.C., 1977. Contribution à l'hydrobiologie de l'ourthe : Dynamique et reproduction des populations de quatre especes de poissons cyprinidae : Barbus barbus (L.), Leuciscus cephalus (L.) et Chondrostoma nasus (L.). Thèse de Doctorat en Sciences Zoologiques, Université de Liège, 225 p.
- [40]. Piélou E.C., 1984. The interpretation of ecological data. Wiley. New York.
- [41]. Robert T.R. & Stewart D.J., 1976. An ecological and Systematic survey of fishes. Bull. Mus. Congo Belge, Zool., 147(6): 239 317.
- [42]. Saville D.J., 1990. Multiple comparaison procedures: the pratical solution. American Statistician, 44 (2): 174-180.
- [43]. Scherrer B., 1984. Présentation des données. Biostatique. Morin, G (Eds), 850 p.
- [44]. Teugels G.G. & Guegan J.F., 1994. Diversité biologique des poissons d'eaux douces de la basse Guinée et de l'Afrique Centrale. In Teugels et al. (eds). Diversité biologique des poissons des eaux douces et saumâtres de l'Afrique : Synthèses géographiques. Symposium Paradis. Ann. Mus. Roy. Afr. Centr. Zool., 275 : 67 85.
- [45]. Teugels G.G. & Thienne L.M., 2005. Freshwater Fish Biodiversity in the Congo Basin. 51 53 pp. In: Thienne L. M., Abell R., Stiassny M.I.J., Skelton P. Eds. Freshwater ecoregions of Africa and Madagascar: A conservation Assessment. Island press, Washington. Cavlo, London, 431 p.

Vol. 47 No. 1 October 2024, pp. 335-366

- [46]. Wamuini L.S., 2010. Ichtyofaune de l'Inkisi (Bas-congo/ RDC) : Diversité et écologie. Thèse de Doctorat en Sciences Biologiques, Ulg., Liege, 304 p.
- [47]. Wetzel R.G., 2001. Limnology, lake and river ecosystems. 3th Edition. Academie Press, San Diego, 1006 p.
- [48]. Yao K.S.A. & Ahoussi K.E., 2020. Caractérisation physico-chimique des eaux de surface dans un environnement minier du Centre-Ouest de la Côte d'Ivoire : cas du Département de Divo. European Scientific Journal, 16(12) : 293-315. URL:http://dx.doi.org/10.19044/esj.2020.v16n12p293.