SSN:2509-0119

Vol. 36 No. 1 December 2022, pp. 553-558

The Size Multipartite Ramsey Numbers $m_j(K_{1,n}, W_4)$ And $m_5(P_n, W_4)$

Syafrizal Sy*¹, Nada Nadifah Ma'ruf², Muhafzan³

Department of Mathematics and Data Science,
Faculty of Mathematics and Natural Science, Andalas University,
Campus of UNAND Limau Manis Padang-25163, Indonesia

*Corresponding Author: syafrizalsy@sci.unand.ac.id

Abstract – For given two any graph H and G, the size multipartite Ramsey number $m_j(H,G)$ is the smallest integer t such that for every factorization of graph $Kj\times t:=F1\oplus F2$ so that F_1 contain H as a subgraph or F_2 contains G as a subgraph. In this paper, we determine $m_j(K_{1,n},W_4)$ with j=4,5 and $m_5(P_n,W_4)$ for $n\geq 2$ where $K_{1,n}$ denotes a star on n+1 vertices, P_n denotes a path on n vertices, and W_4 denotes a wheel on 4 vertices.

Keywords - Paths, Size Multipartite Ramsey Numbers, Stars, Wheels

I. INTRODUCTION

Let G=(V,E) be a graph with the vertex-set V(G) and edge-set E(G). All graphs in this paper are finite and simple. Degree of a vertex v is the number of vertices adjacent to v, denoted deg(v). So, the neighborhood N(v) of a vertex v is the set of vertices adjacent to v in G. The minimum degree and maximum degree of G is denoted by G(G) and G(G), respectively. For any set G(G), the induced subgraph G(G) of G by G(G) is the maximal subgraph of G(G) with the vertex-set G(G). If G(G) is said to be factorable into factors G(G), G(G), which is called a factorization of G(G).

A star $K_{1,n}$ is the graph on n+1 vertices with one vertex of degree n, called the *center*, and n vertices of degree 1. A path P_n is the graph on $n \ge 2$ vertices with two vertices of degree 1, and n-2 vertices on of degree 2. A cycle C_n is a 2-reguler connected graph. A wheel $W_n \cong C_n + \{x\}$ is a graph on n vertices with the hub x which adjacent to all vertices in C_n . Define aP_b is a path with a as initial vertex and b as terminal vertex.

The notion of size multipartite Ramsey numbers were introduced by Burger and Vuuren [3] in 2004, and Syafrizal *et al.* by considering the two factorization of a $K_{j\times t}$ by fixing the size j of the uniform multipartite sets. More precisely, For given two graphs G_1 and G_2 , and integer $j \ge 2$, the size multipartite Ramsey numbers $m_j(G_1, G_{12}) = t$ is the smallest integer such that every factorization of graph $K_{j\times t} := F_1 \oplus F_2$ satisfies the following condition: either F_1 contains G_1 as a subgraph or F_2 contains G_2 as a subgraph. Ramsey numbers of small paths versus cycle of three or four vertices have been studied by Syafrizal Sy [6].

There are only few results on the size multipartite Ramsey numbers $m_j(G,H)$. In this paper, we consider a generalization of this concept by releasing completeness requirement in the forbidden graphs as follows. Syafrizal Sy [7] determined the exact values of the size multipartite Ramsey numbers of large path versus wheel on five vertices. The size multipartite Ramsey numbers $m_j(K_{1,m}, P_n)$ and $m_2(K_{1,m}, C_n)$ was studied by Lusiani *et al.* [5]. The size multipartite Ramsey numbers $m_j(K_{1,t}, P_3) = n$ for

 $j, n \ge 3$ studied by Baqi *et al.* [1]. Furthermore, Baskoro *et al.* [2] studied size multipartite Ramsey numbers for star and cycle $m_j(s_m, C_n)$ for $3 \le n \le j$ and $m \ge 3$. Effendi *et al.* [4] determined size multipartite Ramsey numbers for combination path and wheel on four vertices $m_3(P_n, W_4)$ for $n \ge 3$. The aim of this paper is determined $m_j(K_{1,n}, W_4)$ with j = 4,5 and $m_5(P_n, W_4)$ for $n \ge 2$. In this note, we prove the following theorem.

II. SIZE RAMSEY NUMBERS RELATED TO K_{1,n} AND W₄

We will determine the size multipartite Ramsey numbers for star versus wheel on 4 vertices as the following theorem.

Theorem 3.1. For positive integer $n \ge 2$,

$$m_4(K_{1,n}, W_4) = \begin{cases} 2 & for \ n = 2, \\ 3 & for \ n = 3, \\ \left| \frac{n-1}{3} \right| + 2 & for \ n \ge 4. \end{cases}$$

Proof. We consider three cases as follow.

Case 1. For n = 2.

The first, we determine the lower bound $m_4(K_{1,2}, W_4) \ge 2$. Let $F_1 \oplus F_2$ be the factorization of graph $F = K_{4 \times 1}$ such that F_1 contains no $K_{1,2}$ as subgraph. We assume that F_1 contains a perfect matching $M = \{a_{11}a_{21}, a_{31}a_{41}\}$. Let $a_{21} \in V_2$ be a hub of wheel W_4 and let N(x) be the set of vertices adjacent to x in F_1 , then $|V(F_1)\setminus (V_2 \cup N(x))| < |V(C_4)|$. Clearly that F_2 contains no W_4 as a subgraph. Therefore, $m_4(K_{1,n}, W_4) \ge 2$.

Next, we will determined of upper bound $m_4(K_{1,2}, W_4) \le 2$. Let $G_1 \oplus G_2$ be any the factorization of $G = K_{4 \times 2}$ such that G_1 contains no $K_{1,2}$ as a subgraph. We will show that G_2 contain W_4 as a subgraph. Let $V_i = \{a_{i1}, a_{i2}\}$ for i = 1, 2, 3, 4 be the partite set of G. Since G_1 contains no $K_{1,2}$ then $\Delta(G_1) \le 1$. Assume that G_1 contains perfect matching $M^1 = \{a_{11}a_{41}, a_{12}a_{21}, a_{22}a_{32}, a_{31}a_{42}\}$. Suppose partite V_4 contain vertex $X = a_{42}$ as the center of W_4 . Hence, these all vertices a_{11}, a_{22}, a_{12} , and a_{32} will form cycle on four vertices where the set of vertices is $C_4 := a_{11}, a_{22}, a_{12}, a_{32}, a_{11}$ in G_2 . As a consequence, G_2 contain $W_4 := C_4 + \{X\}$ as a subgraph. Therefore, $m_4(K_{1,n}, W_4) \le 2$.

Case 2. For n = 3.

We will show first that of the lower bound $m_4(K_{1,3}, W_4) \ge 3$. Let $F_1 \oplus F_2$ be a factorization of $F = K_{4\times 2}$ such that F_1 contains no $K_{1,3}$ as a subgraph. Let $V_i = \{a_{i1}, a_{i2}\}$ for i = 1, 2, 3, 4 be the partite set of F. Thus, F_1 contains no $K_{1,3}$ as a subgraph. Assume that $F_1 = 2C_4$ with $V(C_4^1) = \{a_{11}, a_{22}, a_{31}, a_{41}, a_{11}\}$ and $V(C_4^2) = \{a_{12}, a_{21}, a_{32}, a_{42}, a_{12}\}$. Take vertex $x \in V_1$ as a hub of wheel W_4 and N(x) is the set of vertices adjacent to x in F_1 , so that $|V(F)\setminus (V_1 \cup N(x))| < |E(C_4)|$. Thus, F_2 contains no W_4 as a subgraph. Therefore, $m_4(K_{1,3}, W_4) \ge 3$.

Next, to show the upper bound of $m_4(K_{1,3},W_4) \leq 3$. Let $G_1 \oplus G_2$ be the any factorization of $G = K_{4\times 3}$ such that G_1 contains no $K_{1,3}$ as a subgraph. We will show that G_2 contain W_4 as a subgraph. Let $V_i = \{a_{i1}, a_{i2}, a_{i3}\}$ for i = 1, 2, 3, 4 be the partite set of G. Since G_1 contains no $K_{1,3}$, then $\Delta(G_1) \leq 2$. Assume that G_1 contain C_{12} with $V(C_{12}) = \{a_{11}, a_{23}, a_{33}, a_{13}, a_{21}, a_{42}, a_{32}, a_{12}, a_{41}, a_{22}, a_{43}, a_{31}, a_{11}\}$. Suppose vertex $X = a_{21}$ as a hub of wheel W_4 in G_2 . Let N(X) be the set of vertices adjacent to X in G_1 , such that $G_2[V(G) \setminus (V_2 \cup N(X))]$ has 7 vertices. Thus, we have the set of vertices of cycle $C_4 := a_{12}, a_{33}, a_{41}, a_{31}, a_{12}$ in G_2 . So, we have wheel $W_4 := C_4 + \{X\}$ as a subgraph in G_2 . Therefore, $m_4(K_{1,3}, W_4) \leq 3$.

Case 3. For $n \ge 4$.

Suppose $p = \left\lfloor \frac{n-1}{3} \right\rfloor + 2$. We will show first the lower bound $m_4(K_{1,n}, W_4) \ge p$. Let $F_1 \oplus F_2$ be the any factorization of $F = K_{4 \times (p-1)}$ such that F_2 contains no W_4 as a subgraph. Let $V_i = \{a_{ij}\}$ for i = 1, 2, 3 and $j = 1, 2, 3, 4, \dots, p-1$ be the partite sets in F. Since F_2 contains no W_4 as a subgraph, then the maximal degree is 3 for every $a_{ij} \in V(F_1)$. Suppose vertex

 $x \in V_i$ is a center of $K_{1,n}$, then clearly that F_1 contains no $K_{1,n}$ as a subgraph. Since $V(F) = 3 \left\lfloor \frac{n-1}{3} \right\rfloor$ then $V(F_1) = 3 \left\lfloor \frac{n-1}{3} \right\rfloor - 3 < V(K_{1,n})$. Therefore, $M_4(K_{1,n}, W_4) \ge p$.

Next, to show the upper bound of $m_4(K_{1,n}, W_4) \le p$. Let $G_1 \oplus G_2$ be the factorization of $G = K_{4 \times p}$ such that G_1 contains no $K_{1,n}$ as a subgraph. We will to show that G_2 contain W_4 as a subgraph. Let $V_i = \{a_{ij}\}$ be the partite set of G for i = 1, 2, 3, 4 and $j = 1, 2, 3, 4, \cdots$, p. Since G_1 contains no $K_{1,n}$, then $\Delta(G_1) \le n - 1$ in G_1 . Suppose there is exist a one vertex $x \in V_i$ as a hub of W_4 in G_1 . Let N(x) be the set of all vertices adjacent to x in G_1 , then $G_2[V(G)\setminus (V_i \cup N(x))]$ has 3p - (n - 1) vertices, and minimum degree $\delta(G_2[V(G)\setminus V_i \cup N(x)]) \ge 3p - (n - 1)$. Since there exist at least four vertices, namely a, b, c, and d will contain cycle G_4 in G_2 t at least, then G_2 contain $W_4 := G_4 + \{x\}$ as a subgraph. Therefore, $m_4(K_{1,n}, W_4) \le p$.

Theorem 3.2. For positive integer $n \ge 2$,

$$m_5\big(K_{1,n},W_4\big) = \left\{ \begin{array}{cc} 1 & for \ n=2,\\ \left\lfloor \frac{n}{4} \right\rfloor + 1 & for \ n=8k+2, k \in \mathbb{Z}^+,\\ \left\lfloor \frac{n+2}{4} \right\rfloor + 1 & for \ n \ others. \end{array} \right.$$

Proof. We consider three cases as follow.

Case 1. For n = 2.

We will show first the lower bound of $m_5(K_{1,2}, W_4) \ge 1$. Let $F_1 \oplus F_2$ be the any factorization of $F = K_{5 \times (1-1)}$. Clearly that $m_5(K_{1,2}, W_4) \ge 1$.

Next, to show the upper bound of $m_5(K_{1,2}, W_4) \le 1$. Let $G_1 \oplus G_2$ be the any factorization of $G = K_{5 \times 1}$ such that G_1 contains no $K_{1,2}$ as a subgraph. We will show that G_2 contain W_4 as a subgraph. Let $V_i = \{a_{ij}\}$ for i = 1, 2, 3, 4, 5 be the partite set in G. Since G_1 contains no $K_{1,2}$, then $\Delta(G_1) \le 1$. Assume that G_1 contain a matching $M^2 := \{a_{21}a_{31}, a_{41}a_{11}\}$ such that there exist one vertex $X = a_{11}$ as a center of W_4 . Since $|V(G_1) \setminus X| = 4$, then there the vertex set of cycle $C_4 := a_{21}, a_{51}, a_{31}, a_{41}, a_{21}$ in G_2 . So, G_2 will contain $W_4 := C_4 + \{x\}$ as a subgraph. Therefore, $M_5(K_{1,2}, W_4) \le 1$.

Case 2. For $n = 8k + 2, k \in \mathbb{Z}^+$.

We will show first the lower bound of $m_5(K_{1,n}, W_4) \ge \left\lfloor \frac{n}{4} \right\rfloor + 1$ for $n = 8k + 2, k \in \mathbb{Z}^+$. Let $F_1 \oplus F_2$ be the any factorization of $F = K_{5 \times \left\lfloor \frac{n}{4} \right\rfloor}$ such that F_2 contains no W_4 as a subgraph. Let $V_i = \{a_{ij}\}$ be the partite set of F for i = 1, 2, 3, 4, 5 and $j = 1, 2, 3, 4, \cdots, \left\lfloor \frac{n}{4} \right\rfloor$. Since F_2 contains no W_4 as a subgraph, then maximal degree is 3 for every $a_{ij} \in V(F)$. Suppose $x \in V_i$ is the center of $K_{1,n}$. Since $deg(F) = 4 \left\lfloor \frac{n}{4} \right\rfloor$, then $deg(F_1) = 4 \left\lfloor \frac{n}{4} \right\rfloor - 3 < deg(K_{1,n})$. As a consequence, F_1 contains no $K_{1,n}$ as a subgraph. Therefore, $m_5(K_{1,n}, W_4) \ge \left\lfloor \frac{n}{4} \right\rfloor + 1$ for $n = 8k + 2, k \in \mathbb{Z}^+$.

Next, to show the upper bound of $m_5(K_{1,n}, W_4) \le \left\lfloor \frac{n}{4} \right\rfloor + 1$ for $n = 8k + 2, k \in \mathbb{Z}^+$. Let $G_1 \oplus G_2$ be the any factorization of $G = K_{5 \times \left\lfloor \frac{n}{4} \right\rfloor + 1}$ such that G_1 contains no $K_{1,n}$ as a subgraph. We will show that G_2 contain W_4 as a subgraph. Let $V_i = \{a_{ij}\}$ be partite set of G for i = 1, 2, 3, 4, 5 and $j = 1, 2, 3, 4, \cdots, \left\lfloor \frac{n}{4} \right\rfloor + 1$. Since G_1 contains no $K_{1,n}$ as a subgraph, then $\Delta(G_1) \le n - 1$ for n = 8k + 2, such that the partite V_i contain one vertex $X = a_{ij}$ with deg(X) = n - 2 as a hub of W_4 in G_2 . Let N(X) be vertex set adjacent to X in X in

Case 3. For other n.

We will show first the lower bound of $m_5(K_{1,n}, W_4) \ge \left\lfloor \frac{n+2}{4} \right\rfloor + 1$ for other n. Let $F_1 \oplus F_2$ be the any factorization of $F = K_{5 \times \left\lfloor \frac{n+2}{4} \right\rfloor}$ such that, F_2 contains no W_4 as a subgraph. Let $V_i = \{a_{ij}\}$ be the partite set of F for i = 1, 2, 3, 4 and $j = 1, 2, 3, 4, \cdots, \left\lfloor \frac{n+2}{4} \right\rfloor$. Since F_2 contains no F_3 as a subgraph, then the maximal degree for F_3 and F_4 is 3. Since F_4 contains no F_4 is a center of F_4 and F_4 and F_4 is a center of F_4 and F_4 is a center of F_4 . Clearly that, F_4 contains no F_4 for other F_4 as a subgraph. Therefore, F_4 and F_4 is a center of F_4 and F_4 is a center of F_4 .

Next, to show the upper bound of $m_5(K_{1,n}, W_4) \leq \left\lfloor \frac{n+2}{4} \right\rfloor + 1$ for other n. Let $G_1 \oplus G_2$ be the any factorization of $G = K_{5 \times \left\lfloor \frac{n+2}{4} \right\rfloor + 1}$ such that G_1 contains no $K_{1,2}$ as a subgraph. To show that G_2 contain W_4 as a subgraph, suppose $V_i = \{a_{ij}\}$ for i = 1, 2, 3, 4, 5 and $j = 1, 2, 3, 4, \cdots$, $\left\lfloor \frac{n+2}{4} \right\rfloor + 1$ is a partite set of G. Since G_1 contains no G_1 , as a subgraph, then $G_2(V(G)) \setminus (V_i \cup N(X))$ has $G_1(G) \setminus (V_i \cup N(X))$ has $G_2(G) \setminus (V_i \cup N(X))$ has $G_2($

III. SIZE RAMSEY NUMBERS RELATED TO Pn AND W4

We will determine the size multipartite Ramsey numbers for path versus wheel on 4 vertices as the following theorem.

Theorem 4.1. For positive integer $n \ge 2$,

$$m_5(P_n, W_4) = \begin{cases} 1 & for \ 2 \le n \le 3, \\ 2 & for \ 4 \le n \le 5, \\ \left\lfloor \frac{2n+3}{5} \right\rfloor & for \ n \ge 6. \end{cases}$$

Proof. We consider three cases as follow.

Case 1. For $2 \le n \le 3$.

We will show first that the lower bound of $m_5(P_n, W_4) \ge 1$. Let $F_1 \oplus F_2$ be the any factorization of $F = K_{5 \times (1-1)}$. Clearly that, $m_5(P_n, W_4) \ge 1$ for $2 \le n \le 3$.

To show the upper bound of $m_5(P_2, W_4) \le 1$. Let $G_1 \oplus G_2$ be the any factorization of $G = K_{5 \times 1}$ such that G_1 contains no P_2 as a subgraph. We will show that G_2 contain W_4 as a subgraph. Suppose $V_i = \{a_{i1}\}$ for i = 1, 2, 3, 4, 5 is a partite set of G. Since G_1 contains no P_2 as a subgraph, then G_1 is contain independent vertices. Clearly that, $|V(G_1) \setminus V_i| = 4$, thus G_2 contain cycle $G_1 = a_{11} a_{11} a_{11} a_{11} a_{11}$, so that G_2 contain $G_2 = a_{11} a_{11} a_{11} a_{11} a_{11}$. Therefore, $G_2 = a_{11} a_{11} a_{11} a_{11} a_{11} a_{11} a_{11}$.

Next, to show the upper bound of $m_5(P_3, W_4) \le 1$. Let $G_1 \oplus G_2$ be the any factorization of $G = K_{5 \times 1}$ such that G_1 contains no P_3 as a subgraph. We will show that G_2 contain W_4 as a subgraph. Suppose $V_i = \{a_{i1}\}$ is a partite set in G for i = 1, 2, 3, 4, 5. Since G_1 contains no P_3 as a subgraph, we assume G_1 contain a matching $M^2 = \{a_{11}a_{31}, a_{51}a_{41}\}$. So, there is exist one vertex, namely $X = a_{21}$, as a hub of W_4 . Since $|V(G_1) \setminus V_i| = 4$, then there exist $G_4 := a_{11}a_{41}a_{31}a_{51}a_{11}$ in G_2 . Clearly that, vertex $X_1 = a_{11}a_{41}a_{$

Case 2. For $4 \le n \le 5$.

We will show first that the lower bound of $m_5(P_n, W_4) \ge 2$ for $4 \le n \le 5$. Let $F \oplus F_2$ be the any factorization of $F = K_{5 \times (2-1)}$ such that F_1 contain no P_n as a subgraph. Suppose $V_i = \{a_{i1}\}$ is the partite set in F for i = 1, 2, 3, 4, 5. Since F_1 contains no P_n as a subgraph and $|V(F_2) \setminus V_i| < |V(C_4)|$, then clearly that F_2 contains no W_4 as a subgraph. Therefore, $m_5(P_n, W_4) \ge 2$.

Next, to show the upper bound of $m_5(P_4, W_4) \le 2$. Let $G_1 \oplus G_2$ be the any factorization of $G = K_{5 \times 2}$ such that G_1 contain no P_4 as a subgraph. To show G_2 contain W_4 , we consider two the following.

Case 2.1. If $G_1 = 3K_3 \cup P_4$.

Let $V_i = \{a_{i1}, a_{i2}\}$ be the partite set of G for i = 1, 2, 3, 4, 5. Suppose $V(K_3^1) = \{a_{11}, a_{22}, a_{31}, a_{11}\}$, $V(K_3^2) = \{a_{12}, a_{21}, a_{52}, a_{12}\}$, $V(K_3^3) = \{a_{32}, a_{41}, a_{51}, a_{32}\}$ is a graph $3K_3$ and $V(P_1) = a_{41}$ in G_1 . Since G_1 contain no P_4 as a subgraph, then vertex $V(P_1) = a_{41}$ no adjacent to every vertices in G_2 such that vertex a_{41} is hub of a_{41} , such that a_{42} is hub of a_{43} . Therefore a_{42} , a_{43} , a_{44} , a_{44} in a_{4

Case 2.2. If $G_1 \neq 3K_3 \cup P_1$.

Since G_1 contains no $3K_3 \cup P_1$, then there is exist x one vertex x with $deg(x) \le 1$. Suppose $A = V(K_{5\times 2}) \setminus (V_i \cup N(x))$, such that $|V(A)| \ge 7$. Since $P = aP_b$ is longest path in A, then $xa, xb \notin E(G_1)$. Next, Suppose $I = V(A) \setminus (V_a \cup V_b)$ is the subset of induce subgraph $G_1[A]$. Since $|V(I)| \ge 3$, then there exist at leas two vertices, namely c and d, where $c, d \in (G_1[I])$. Since $ab, bc, cd, da \notin E(G_1)$ and $xd, xc \notin E(G_1)$, then these all vertices a, b, c and d will form C_4 in C_4 such that C_4 contain C_4 in C_4 in C_4 such that C_4 contain C_4 in C_4 in C_4 such that C_4 contain C_4 in C_4 in C_4 in C_4 such that C_4 contain C_4 in C_4 in C_4 in C_4 such that C_4 contain C_4 in C_4 in C_4 in C_4 such that C_4 contain C_4 in C_4 in C_4 in C_4 in C_4 such that C_4 contain C_4 in C_4 in

Next, to show the upper bound of $m_5(P_5, W_4) \le 2$. Let $G_1 \oplus G_2$ be the any factorization of $G = K_{5 \times 2}$ such that G_1 contains no P_5 as a subgraph. We will show that G_2 contain W_4 as a subgraph whit two the following cases.

Case 2.3. If $G_1 = 2K_4 \cup P_2$.

Suppose $V_i = \{a_{i1}, a_{i2}\}$ with i = 1, 2, 3, 4, 5 is a partite set in G. Since G_1 contain $2K_4 \cup P_2$ as a subgraph, then we may assume that there exist a subgraph $2K_4 \cup P_2$ with $V(K_4^1) = \{a_{11}, a_{22}, a_{32}, a_{51}\}$, $V(K_4^2) = \{a_{12}, a_{21}, a_{41}, a_{52}\}$ contain $2K_4$, and $V(P_2) = \{a_{31}, a_{42}\}$ in G_1 , such that a_{31} will form a wheel W_4 whit X a as hub. A consequence, all these vertices $a_{11}, a_{21}, a_{51}, a_{41}$ also no adjacent to all vertex in G_1 , such that will form cycle C_4 in G_2 . Hence, G_2 contain $W_4 := C_4 + \{x\}$ as a subgraph. Therefore, $M_5(P_5, W_4) \le 2$.

Case 2.4. If $G_1 \neq 2K_4 \cup P_2$.

Since G_1 contains no $2K_4 \cup P_2$, then there exist one vertex x with $deg(x) \le 2$. Since $B = V(K_{5 \times 2}) \setminus (V_x \cup N(x))$ then $|V(B)| \ge 6$. Since $P = P_b$ is the longest of B, then $xa, xb \notin E(G_1)$. Next, since $L = V(B) \setminus (V_a \cup V_b)$ where V(B) is a subset of B which induced subgraph by G_1 , so that $|V(L)| \ge 2$, then there are exist at least two vertices, namely C and C0, with C1, C2 and C3 a consequence, since these all edges C4 and C5 and C6 and C7. Then there are exist at least two vertices, namely C5 and C6 and C7 and C8 are consequence, since these all edges C8 as a subgraph. Therefore, C9 as a subgraph of C9 as a subgraph of C9.

Case 3. For $n \ge 6$.

Suppose $s = \left\lfloor \frac{2n+3}{5} \right\rfloor$. We will show the upper bound of $m_5(P_n, W_4) \ge 2$ for ≥ 6 . Let $F \oplus F_2$ be the any factorization of $F = K_{5 \times (s-1)}$ such that F_1 consist of two partitions, namely J_1 and J_2 , with J_1 contain complete multipartite graph and J_2 is complement of J_1 . Since $|V(J_1)| = n - 1 < n$ and $|V(J_2)| = 5 \left\lfloor \frac{2n+3}{5} \right\rfloor - (n-1) < n$, then F_1 contains no P_n as a subgraph. Since F_1 consist of two partitions, then clearly that F_2 contains no W_4 as a subgraph. Therefore, $m_5(P_n, W_4) \ge s$.

Next, to show the upper bound of $m_5(P_n, W_4) \le s$. Let $G_1 \oplus G_2$ be the any factorization of $G = K_{5 \times s}$ such that G_1 contains no P_n as a subgraph for $n \ge 6$. Assume that G_1 contain longest path, namely $P = aP_b$. We will show that G_2 contain W_4 as a subgraph so that, we consider four possibilities.

Case 3.1. If $V_a = V_b$ and $V_c = V_d$.

Let P be the set of vertices in G_1 , then $A = V(K_{5 \times s}) \setminus (V_b \cup N(P))$. Next, Suppose $Q = cQ_d$ is the longest path in G_1 which induced G[A] and $B = V(A) \setminus (V_c \cup N(Q))$. Since $ac, cb, bd, da \notin E(G_1)$, then the all vertices a, b, c and d ca be form a cycle C_4 in G_2 . Furthermore, since $5\left\lfloor \frac{2n+3}{5}\right\rfloor - 2(n-1)$ with $\delta(G_2) \ge 1$, so that there is one vertex x in $V(G_2) \setminus (V_b \cup V_c)$ such that x adjacent to all edges $ac, cb, bd, da \in E(G_2)$. As a consequence, G_2 contain $W_4 := C_4 + \{x\}$ as a subgraph. Therefore, $M_5(P_n, W_4) \le s$.

Case 3.2. If $V_a = V_b$ and $V_c \neq V_d$.

Let P be the set of vertices in G_1 , then $A = V(K_{5 \times s}) \setminus (V_b \cup N(P))$. Next, Suppose $Q = cQ_d$ is the longest path in G_1 which induced G[A] and $B = V(A) \setminus (V_c \cup V_d \cup N(Q))$. Since $ac, cb, bd, da \notin E(G_1)$, then all edges ac, cb, bd, da will form C_4 in G_2 . So, since $5 \left\lfloor \frac{2n+3}{5} \right\rfloor - 2(n-1)$ with $\delta(G_2) \ge 1$, such that there is exist one vertex x in $G_2(V_b \cup V_c \cup V_d)$ which this implies of x adjacent to all edges $ad, db, bc, ca \in E(G_2)$. Hence, G_2 contain $W_4 := C_4 + \{x\}$ as a subgraph. Therefore, $m_5(P_n, W_4) \le s$.

Case 3.3. If $V_a \neq V_b$ and $V_c = V_d$

Let P be the set of vertices in G_1 , then $A = V(K_{5 \times s}) \setminus (V_a \cup V_b \cup N(P))$. Next, Suppose $Q = cQ_d$ is the longest path in G_1 which induced G[A] and $B = V(A) \setminus (V_d \cup N(Q))$. Since $ac, cb, bd, da \notin E(G_1)$, then the all these vertices a, b, c, d will be form cycle C_4 in G_2 . Since $5 \left \lfloor \frac{2n+3}{5} \right \rfloor - 2(n-1)$ with $S(G_2) \ge 1$, such that there is exist one vertex $S(G_2) \setminus V_d \cup V_$

Case 3.4. If $V_a \neq V_b$ and $V_c \neq V_d$.

Let P be the set of vertices in G_1 , then $A = V(K_{5 \times s}) \setminus (V_a \cup V_b \cup N(P))$. Next, Suppose $Q = cQ_d$ is the longest path in G_1 which induced G[A] and $B = V(A) \setminus (V_c \cup V_d \cup N(Q))$. Since $ac, cb, bd, da \notin E(G_1)$, such that the all these vertices a, b, c, and d will be form cycle C_4 in G_2 . Since $5\left\lfloor \frac{2n+3}{5}\right\rfloor - 2(n-1)$ with $\delta(G_2) \geq 1$, such that there is one vertex x in $G_2 \setminus (V_a \cup V_b \cup V_c \cup V_d)$ which this implies of x adjacent to all vertices $ac, cb, bd, da \in E(G_2)$. Hence, G_2 contain $G_2 \setminus (V_a \cup V_b \cup V_c \cup V_d)$ which this implies of $C_4 \cap C_5$ and $C_5 \cap C_6$ are all vertices $C_6 \cap C_6$. Hence, $C_6 \cap C_6$ contain $C_6 \cap C_6$ as a subgraph. Therefore, $C_6 \cap C_6$ and $C_6 \cap C_6$ are all vertices $C_6 \cap C_6$ and $C_6 \cap C_6$ contain $C_6 \cap C_6$ as a subgraph.

IV. CONCLUSIONS

In this paper, we obtain the size multipartite Ramsey numbers for $m_i(K_{1,n}, W_4)$ for j = 4.5 and $m_5(P_n, W_4)$ with $n \ge 2$.

REFERENCES

- [1] Baqi, A. I., Effendi, Syafrizal Sy, Surahmat, and Dafik, "Size Multipartite Ramsey Number For Stars Versus Path On Three Vertices", vol. 101. Far East Journal of Mathematical Science. 2017, pp. 2575–2582.
- [2] Baskoro, E. T., Lusiana, A., Syafrizal Sy, and Jayawardene, "On Size Multipartite Ramsey Numbers for Stars versus Cycles", vol. 74. Procedia Computer Science. 2015, pp. 27–31.
- [3] Burger A. P., and Van Vuuren, J.H, "Ramsey Numbers In Complete Balance Multipartite Graphs, Part II: Size Numbers", vol. 283. Discreate Math. 2004, pp. 45–49.
- [4] Effendi, Ginting, B., Syafrizal Sy, Surahmat, and Dafik, "The Size Multipartite Ramsey Numbers of Large Paths Versus Small Graph", vol. 102. Far East Journal of Mathematical Science. 2017, pp. 507–514.
- [5] Lusiani, A., Baskoro, E. T., and Saputro, S. W, "On Size Multipartite Ramsey Numbers For Stars and Cycle", vol. 1. Electronic Journal of Graph Theory and Applications. 2017, pp. 43–50.
- [6] Syafrizal Sy, "On Size Multipartite Ramsey Numbers For Paths Versus Cycle of Three or Four Vertices", vol. 44. Far East Journal of Mathematical Sciences. 2010, pp. 109–116.
- [7] Syafrizal Sy, "On Size Multipartite Ramsey Numbers of Large Path Versus Wheel On Five Vertices", vol. 1. Discrete Mathematics, Algorithms and Applications. 2022, pp. 1–5.